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Abstract

Imitation learning has long been an approach to alleviate the tractability issues that arise in reinforcement learning.
However, most literature makes several assumptions such as access to the expert’s actions, availability of many
expert demonstrations, and injection of task-specific domain knowledge into the learning process. We propose
reinforced inverse dynamics modeling (RIDM), a method of combining reinforcement learning and imitation
from observation (IfO) to perform imitation using a single expert demonstration, with no access to the expert’s
actions, and with little task-specific domain knowledge. Given only a single set of the expert’s raw states, such
as joint angles in a robot control task, at each time-step, we learn an inverse dynamics model to produce the
necessary low-level actions, such as torques, to transition from one state to the next such that the reward from the
environment is maximized. We demonstrate that RIDM outperforms other techniques when we apply the same
constraints on other methods on five domains of the MuJoCo simulator and for two different robot soccer tasks for
two experts from the RoboCup 3D simulation league on the SimSpark simulator.
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1. Introduction
Learning from experience, or reinforcement learning (Sutton and Barto, 1998), has proven to be an effective approach of
instilling intelligence into an agent. However, a major limitation is that this learning process can be extremely slow and
expensive. This limitation is especially true for physical robots, where robots are expensive and prone to wear and tear. In
order to alleviate these issues, imitation learning (Schaal, 1997; Argall et al., 2009) techniques have been employed to guide
a learning agent along an expert’s trajectory to speed up the learning process.

While imitation learning has proven to be very effective, it has often operated under three assumptions. First, the learner
often needs access to the expert’s actions. This restriction proves to be a very limiting constraint since it prevents us from
using many unused resources such as YouTube videos that may not include expert actions. Second, the developed methods
often require access to many demonstrations of the expert. Since expert demonstration collection is often expensive, we
would like to reduce our dependence on the availability of many expert demonstrations. Third, domain knowledge is usually
injected in the state space during the learning process. For instance, in the case of an arm robot, in a reaching task where the
goal is to get the end effector close to a specific location, the distance from the target location is usually included in the state
space. This information is task specific and often makes the learning process much simpler. However, in general, acquiring
this type of knowledge can be expensive; therefore, we would like to distance ourselves from this idealized situation and
remove the task-specific domain knowledge used in the state space (in the rest of the paper this is referred to as raw state
space).

We propose RIDM, a method of combining reinforcement learning (access to the environment reward) and model-based
imitation from observation (IfO) to perform imitation of an expert from a single expert demonstration, with no action
information, and with no task-specific domain knowledge in the state space. More specifically, given a single set of only the
expert’s raw states at each time-step, our algorithm uses a randomly-initialized inverse dynamics model to infer actions to
transition from the current state to the next. It then executes these actions in the environment. It finally uses the generated
data to train the inverse dynamics model such that the cumulative reward from the environment is maximized. This process
repeats until convergence. The motivation for our algorithm is that we use the reward as a way for the learner to explore and
the state-only expert demonstration as a template for ideal behavior. In our experiments, which are focused on robot control
domains, we model our inverse dynamics model as a PID controller, and are interested in learning the gains of the PD
controller to infer the actions, and we reduce the task-specific domain knowledge in the state space exposed to the learner to
only joint angle values per time-step. We use covariance matrix adaptation evolution strategy (CMA-ES) (Hansen et al.,
2003) as our reinforcement learning algorithm to optimize the inverse dynamics model parameters.

The remainder of the paper is organized as follows. Section 2 discuses the current literature in imitation from observation,
integrating reinforcement learning and imitation learning, and robot soccer skill learning. Section 3 outlines the preliminaries
and background necessary for the remaining content of the paper. Section 4 details our proposed control algorithm, RIDM.
Section 5 discusses our experiments on the MuJoCo domain and SimSpark robot soccer simulator. Finally, Section 6
outlines a summary and future work. We also include Supplementary Materials in Appendix A.

2. Related Work
This section provides a broad outline of research related to our work. The section is organized as follows. Section 2.1 details
previous work on imitation from observation. Section 2.2 discusses efforts so far in integrating reinforcement learning and
imitation learning. Finally, Section 2.3 details successful efforts of using CMA-ES for robot skill learning in simulation.

2.1. Imitation from Observation

The focus of imitation from observation (IfO) is to learn a policy that results in similar behavior as the expert demonstration
with state-only demonstrations. There are broadly two approaches: (1) model-based and (2) model-free. In our work, we are
focused on model-based. For details on model-free refer to the work of Merel et al. (2017), Henderson et al. (2017a), Torabi
et al. (2018b), Stadie et al. (2017), Sermanet et al. (2017), and Dwibedi et al. (2018).

In model-based IfO, the aim is to model the dynamics of the agent, environment, and/or both. Two types of models are (1)
inverse dynamics model and (2) forward dynamics model. In this section, we elaborate on the inverse dynamics model since
it is a core component of our control algorithm. For details of using a forward dynamics model for IfO, refer to Edwards
et al. (2018).
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An inverse dynamics model builds a mapping from state-transitions to actions ie: {(st, st+1)} → {at} (Hanna and Stone,
2017). An application of this modeling was done by Nair et al. (2017a) where they show the learner a single demonstration
of an expert performing some task with the intention of the learner replicating the task exactly. They do this by allowing
the learner to undergo self-supervision and collect {(st, at, st+1)}, which is then used to train an inverse dynamics model.
The learned model is then applied on the expert demonstration to infer the expert actions. Another method of this type
is behavioral cloning from observation (BCO) by Torabi et al. (2018a), which, similarly, first trains an inverse dynamics
model in a self-supervised fashion, and applies the learned model on the expert demonstration(s) to infer the expert actions.
However, BCO then trains a policy by behavioral cloning (BC) (Pomerleau, 1991), which maps the expert states to the
inferred actions.

Our work differs from past work in that we reinforce the learning of an inverse dynamics model by incorporating the
provided environment reward.

2.2. Integrating Reinforcement Learning and Imitation Learning

Another area of research related to our work is dealing with the case when an expert demonstration may be a good starting
point, but may be sub-optimal. One way to address this issue is by combining reinforcement learning and imitation learning.

There has been significant effort to combine reinforcement learning and imitation learning. For example, Knox and
Stone (2010; 2012) introduced the TAMER + RL framework that combines manual feedback with rewards from the MDP.
Lakshminarayanan et al. (2016) uses a hybrid formulation of reward and expert state-action information in the replay buffer
when training deep Q-network (DQN) to speed-up the training procedure. Hosu and Rebedea (2016) use deep RL to learn
an Atari game but they use human checkpoint replays as starting points during the learning process instead of re-starting
the game at the end of the episode. Subramanian et al. (2016) and Nair et al. (2017b) use IL information to alleviate
the exploration process in RL. Hester et al. (2017) pre-train a deep neural network by optimizing a loss that includes a
temporal difference (TD) loss as well as supervised learning loss with the expert actions. Zhu et al. (2018) optimize a linear
combination of the imitation reward outputted by generative adversarial imitation learning (GAIL) (Ho and Ermon, 2016)
and the task reward. However, it is important to note that these works assume that the learner has access to the expert’s
actions.

Our work is distinct from the current literature in that we focus on the integration of reinforcement learning and imitation
from observation where we do not have access to expert actions.

2.3. Robot Soccer Skill Learning

There has been much success of using covariance matrix adaptation evolution strategy (CMA-ES) (Hansen et al., 2003) for
derivative-free optimization in reinforcement learning. Salimans et al. (2017) have noted the scalability of evolutionary
algorithms for reinforcement learning tasks. We have also seen much success of applying CMA-ES to skill learning in
robot soccer (Urieli et al., 2011). For example, for walking, MacAlpine et al. (2012) have used CMA-ES to learn UT
AustinVilla’s omnidirectional walk engine, which is currently among the best in the RoboCup 3D simulation league. For
kicking, Depinet et al. (2015) develop a method called KSOBI (keyframe sampling, optimization, and behavior integration)
that uses CMA-ES to learn a 20m long distance kick.

In our work, we make use of CMA-ES to learn and improve upon the expert’s walking and kicking skills.

3. Preliminaries
This section describes the relevant background needed to understand the later sections. In particular, Section 3.1 gives an
idea of the machine learning problem we are interested in. Section 3.2 discusses the basics of imitation learning. Section
3.3 provides insights into the PID controller, an integral component of this work. Finally, Section 3.4 and Section 3.5
describe the domains used in our experiments, the MuJoCo simulator and RoboCup SimSpark simulator respectively.

3.1. Reinforcement Learning (RL)

We model agents interacting in some environment as a Markov decision process (MDP). An MDP is denoted by the tuple,
M = 〈S,A, T,R, γ〉, where S is the state space of the agent, A is the action space of the agent, T are the transition
probabilities of moving from one state to another given the agent took a particular action i.e. T : S × A × S → [0, 1],
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Figure 1. A high level depiction of RL. Here, an agent takes some action At in the environment given its current state St, and receives a
reward Rt and lands in state St+1, and this interaction repeats.

Figure 2. A high level depiction of direct policy search. An agent acts according to some parameters, and receives a fitness score at the
conclusion of the executed behavior. The optimization algorithm uses this fitness score to tune parameters to maximize this fitness.

R is the scalar reward received by the agent after moving from one state to another given it took a particular action i.e.
R : S ×A× S → R, and γ ∈ [0, 1] is the discount factor indicating how much the agent values future rewards.

Reinforcement learning (RL) (Sutton and Barto, 1998) is a type of machine learning that builds upon behavioral psychology,
where a learner essentially aims to learn from experience by sequentially making decisions in some environment. More
specifically, it involves a learning agent transitioning from one state to another after taking some action in an environment,
and typically receiving some reward for its transition and action choice. Ultimately, the agent seeks to learn a policy that
maps states to actions that will maximize its (discounted) cumulative reward i.e. it aims to solve maxπ:S→A

∑∞
i=0 γ

tRt
to find a policy π where S is the state space of the learner, A is the action space of the learner, γ is the reward discount
factor, and Rt is the reward received at time-step t by the agent after taking action at when in state st. Figure 1 provides an
illustration of RL. Below we discuss a particular approach to RL.

3.1.1. DIRECT POLICY SEARCH

There are a wide range of variations to RL. A particular flavor is one that directly aims to learn parameters of a parameterized
policy. During optimization, an agent executes its policy according to some parameters, and receives an overall reward or
fitness score at the conclusion of the execution. The optimization algorithm then seeks to tune these parameters to maximize
this overall fitness. Figure 2 provides an idea of the general flow of this optimization procedure.

3.1.2. COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY (CMA-ES)

In this work, we employ CMA-ES as our direct policy search algorithm. While the details of the algorithm can be found in
Hansen et al. (2003), we highlight the important high-level details here.

CMA-ES is a derivative-free stochastic optimization algorithm, which can be used to tune parameters to optimize some
fitness metric. From a high-level perspective, the optimization procedure is similar to the hill-climbing strategy to maximize
some function when its gradient is available i.e. the optimization moves in a direction of maximum increase of the function.
Similarly, CMA-ES models a probability distribution and moves this distribution towards the region that samples parameters
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Figure 3. Illustration of CMA-ES for a 2D optimization case. Each dot in an image represents a parameter candidate. Each successive gen-
eration of candidates is sampled from a distribution that moves towards the global optimum. [Image from: https://en.wikipedia.
org/wiki/CMA-ES#/media/File:Concept_of_directional_optimization_in_CMA-ES_algorithm.png]

that have high fitness scores.

Initially CMA-ES is given a seed, which specifies a multi-variate normal distribution with the initial value of the parameters
to optimize along with the standard deviations for each of the parameters. At each training iteration, CMA-ES samples
potential candidate parameters according to this probability distribution as a part of a population set. Each candidate is
then evaluated and assigned a fitness score. CMA-ES then adjusts its model of the probability distribution to increase
the probability of sampling candidates similar to those candidates that had high fitness scores in the previous iteration.
Ultimately, CMA-ES aims to converge to the probability distribution that samples candidates with overall high fitness scores.
Refer to Figure 3 for a pictorial representation of CMA-ES.

3.2. Imitation Learning (IL)

Learning solely from experience can be very expensive. It can sometimes be intractible for an agent to fully explore the state
space to converge to an optimal policy. This is especially the case in real-world robotics, where exploration must be done in
real time and can incur large costs due to safety considerations. A popular solution to alleviate this problem is for some
expert to guide the learner to the optimal policy through imitation learning (IL).

3.2.1. CONVENTIONAL IMITATION LEARNING

Conventional IL involves showing a learner an expert demonstration in the form of state-action pairs, De = {(set , aet )}
where set is the state of the expert and aet is the action taken by the expert at time t, and the goal is to learn a policy π that
correctly produces a behavior similar to the expert demonstration. There are two primary approaches to recovering π: (1)
behavioral cloning (BC) and (2) inverse reinforcement learning (IRL). In this section, we elaborate only on BC since it
provides an intuitive transition from imitation learning to imitation from observation. For a detailed understanding of IRL,
refer to the work of Russell (1998) and Ng and Russell (2000).

In behavioral cloning (BC) (Bain and Sammut, 1995; Ross et al., 2010; Daftry et al., 2016), we model the problem as a
supervised learning problem, and learn a policy, π : set → aet . This method has been successful on some complex tasks such
as autonomous vehicle tasks (Bojarski et al., 2016; Giusti et al., 2016). While successful, a major problem with BC is the
covariate shift problem (Ross and Bagnell, 2010) where, if during imitation, the learner deviates from the expert trajectory,
then the error compounds for rest of the trajectory.

A major limitation of conventional IL is that the learner needs access to the expert actions, {aet}. This assumption is not
necessarily practical, since many demonstrations do not have expert actions, and collecting this data can be expensive.
Moreover, there are a large number of online demonstration videos that do not contain any expert information; it would be
tremendously beneficial if we can exploit this valuable data without dependence on expert action information.

https://en.wikipedia.org/wiki/CMA-ES#/media/File:Conce pt_of_directional_optimization_in_CMA-ES_algorithm.png
https://en.wikipedia.org/wiki/CMA-ES#/media/File:Conce pt_of_directional_optimization_in_CMA-ES_algorithm.png
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(a) Reacher (b) Ant (c) HalfCheetah (d) Swimmer (e) Hopper

Figure 4. Representative screenshots of the MuJoCo domains considered in this paper.

3.2.2. IMITATION FROM OBSERVATION (IFO)

IL in the absence of expert action information is called imitation from observation (IfO) (Liu et al., 2017). That is, we are
trying to learn the same policy mapping π but we do not have access to expert actions. Here, our expert demonstration is of
the form De = {set} i.e. the learner is shown only the states of the expert. In this case, we cannot simply apply behavioral
cloning since we do not have any labels; instead, we must infer the expert actions {aet} to get {ãet} for each state {set} to
retrieve D̃e = {(set , ãet )}. In this work, we focus on building an IfO control algorithm.

3.3. Proportional–Integral–Derivative (PID) Controller

The PID controller is a popular control loop feedback mechanism used in control systems. Given that we are trying to
adjust some variable, the PID controller will help in accurately applying the necessary correction to reach a desired setpoint.
For example, if we want a robot to move its arm from 10◦ to 30◦ (desired setpoint), the PID controller will appropriately
calculate the necessary torque/force to accomplish this transition. Moreover, the PID controller is also responsive; in other
words, if the force applied to move from 10◦ to 30◦ is less or more than required, it will accordingly respond and adapt.

Mathematically, the PID controller is modeled as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(1)

where e(t) is the error between the desired setpoint and current point value, Kp, Ki, andKd are the proportionality constants
for the proportional, integral, and derivative terms respectively. Intuitively, each term means the following: the proportional
term signifies that if the desired setpoint is far from our current point, we should apply a larger correction to reach there,
the integral term keeps track of the cumulative error of the point from the desired setpoint at each time step, this helps
in applying a large correction if we have been far from the desired set point for a long time, and finally, the derivative
term represents a damping factor that controls the excessive correction that may result from the proportional and integral
components.

Since the PID controller accounts for the error to get from one state, st, to a desired setpoint, st+1, we view the PID
controller as an inverse dynamics model, a mapping from state-transitions to actions i.e. {(st, st+1)→ at}, which tells us
which action at the agent took to go from state st to state st+1. We consider input and output of Equation 1 to be the raw
states and low-level actions respectively.

3.4. MuJoCo Simulator

The MuJoCo simulator (Todorov et al., 2012) is a physics engine that is designed to help build optimization algorithms
in contact-rich environments. The simulator allows us to test algorithms for optimal control and state estimations. A key
feature of the simulator, which is crucial to our work, is that the inverse dynamics are accurate despite the presence of
contacts such as soft contacts and dry friction.

The simulator provides a range of domains for testing. In our experiments, we have focused on Reacher-v2, Ant-v2,
HalfCheetah-v2, Swimmer-v2, and Hopper-v2. Figure 4 gives a pictorial representation of each of these domains. We
elaborate on the specifics of each domain in Section 5.1.1.
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Figure 5. Coordinate system of the soccer field in the 3D simulation domain. Units are in meters. [Image
from: http://simspark.sourceforge.net/wiki/images/thumb/3/31/SoccerSimulation_FieldPlan.png/
600px-SoccerSimulation_FieldPlan.png]

Figure 6. Simulated Nao robot in SimSpark

3.5. Robot Soccer 3D Simulation Domain

The RoboCup 3D simulation domain is supported by two components - SimSpark (Boedecker and Asada, 2008; Xu and
Vatankhah, 2014) and Open Dynamics Engine (ODE). SimSpark provides support for simulated physical multiagent system
research. The ODE library enables realistic simulation of rigid body dynamics. With ODE, we are also able to model hinge
joints in the humanoid agents such as knee angles when an agent kicks the ball.

In RoboCup, a soccer game is between two teams, each with 11 players. The duration of a game is a total of 10 minutes
(two 5 minute halves). The game takes place on a field same as the one shown in Figure 5. The figure shows the 30 X 20 sq.
meter field size, location of the goals, center of the field, and bounds of the field. Each of these players (Figure 6), or agents,
are based on the Aldebaran Nao robot, which has a height of about 57 cm, and a mass of 4.5 kg. Each agent has 22 degrees
of freedom: six in each leg, four in each arm, and two in the neck. Each agent has the ability to determine its exact angular
measurements with its perceptors and specify speed and direction when moving a joint with its effectors.

In this domain, information received and used by the agent is constrained by simulation cycles, which occur every 20 ms.
Visual data, which is received every three simulation cycles, gives the distances and angles to other objects that are within
the agent’s vision cone (120◦). Agents can also receive up to 20 byte messages from other agents every two simulation
cycles.

4. Reinforced Inverse Dynamics Modeling
We consider the problem of inferring an expert’s actions, {aet}, given a single state-only expert demonstration, De = {set},
where each set is the raw state of the expert per time-step. We propose RIDM, a method of integrating reinforcement learning
and imitation from observation to learn an inverse dynamics model to perform imitation from a single expert demonstration
using only raw states. In this framework, our inverse dynamics model, paramaterized by θ, maps state-transitions from the
imitator’s current state, st, to the desired expert’s state, set+1, at time-step t, to an inferred action ãet . Our inverse dynamics

http://simspark.sourceforge.net/wiki/images/thumb/3/31/SoccerSimulation_FieldPlan.png/600px-SoccerSimulation_FieldPlan.png
http://simspark.sourceforge.net/wiki/images/thumb/3/31/SoccerSimulation_FieldPlan.png/600px-SoccerSimulation_FieldPlan.png
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model learns this mapping appropriately such that {ãet} maximizes the cumulative reward from the environment, Renv .

We now provide an overall sketch of RIDM. The algorithm first randomly initializes θ, the parameters of our inverse
dynamics model. Then if a known exploration policy, πpre, is available, the algorithm collects πpre’s state-action pairs
{(spret , apret )}, else we use the randomly-initialized parameters. The algorithm then applies the inverse dynamics model on
the state-transition pairs of the agent’s current state to the desired pre-known policy state, {(s′t, s

pre
t+1)}, to get the inferred

exploration policy actions, {ãpret }. θ is then optimized such that the distance between the inferred exploration policy actions,
{ãpret }, and true exploration policy actions, {apret } is reduced by optimizing Equation 2. This process is repeated until
convergence. The pre-trained inverse dynamics model is then applied to the state-transition pairs of the imitator’s current
state to the desired expert’s state, {(st, set+1)}, to get the inferred expert actions, {ãet}. The learning agent then executes
{ãet} in the environment, and its observed states {st} and cumulative environment reward, Renv , are collected. Finally, θ is
optimized such that the Renv is maximized according to Equation 3. This process repeats until convergence.

In our work, we use CMA-ES to learn the parameters, θ, of our inverse dynamics model. The psuedo-code for RIDM is
given in Algorithm 1.

Algorithm 1 RIDM
1: Let De = {set} be a single demonstration of raw states per time-step with no action information
2: Let θ be the parameters of the inverse dynamics model
3: Randomly initialize θ
4: if πpre available then
5: Let Dpre = {(spret , apret )} generated by πpre

6: while not converged do
7: Infer actions, {ãpret }, for {(s′t, s

pre
t+1)} using θ

8: Update θ by optimizing Equation 2
9: end while

10: end if
11: while not converged do
12: Infer actions, {ãet}, for {(st, set+1)} using θ
13: Execute {ãet}
14: Collect observed states {st}
15: Collect cumulative episode reward Renv
16: Update θ by optimizing Equation 3
17: end while
18: return θ

4.1. Inverse Dynamics Model Pre-training

Prior to learning the inverse dynamics model parameters, θ, for imitation, we pre-train θ using a pre-known exploration
policy, if available, else we use randomly-initialized parameters. The motivation here is that if we have access to an
exploration policy with reasonable level of performance, we can use this as a starting point instead of randomly-initialized
values. We now describe the pre-training process. Note that we ultimately want to infer the actions of an expert policy,
whose actions are unknown. In this phase, we pre-train on an exploration policy, whose actions are known.

RIDM first initializes θ randomly from a uniform distribution. If a known exploration policy, πpre : spret → apret , is
available, the algorithm executes it in the environment, and collects the transition-action pairs, T pre = {(spret , apret , spret+1)}.
It then computes {ãpret } for each state-transition pair of the agent’s current state to the desired pre-known policy state,
{(s′t, s

pre
t+1)} using θ, and then tunes θ using CMA-ES by optimizing the fitness f1 given Equation 2. This procedure repeats

until convergence.

f1 = − 1

T

J∑
j=1

T∑
t=1

|ãpretj − a
pre
tj |

max (aprej )−min (aprej )
(2)
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where T is the length of the episode, J is the size of the expert raw state we are considering, such as the number of joints
angles in a robot control task at given time-step, apretj and ãpretj are the true and predicted low-level actions, such as torques
in a robot control task, of the exploration policy corresponding to the jth instance in the raw state, at time step t, and aprej

are all the low-level actions for the jth instance of the low-level action across all T time steps. The benefit of Equation 2 is
that it will trade-off short term errors in order to optimize the differences across a full trajectory. For a robot control task,
each j can correspond to a particular joint angle and aj can correspond to the set of torques applied to the jth joint across all
T time-steps.

We normalize the absolute difference between the actions to emphasize the range of values that the true actions take on. For
example, if a true value of a low-level action varies between two large values, a small absolute error may be insignificant.
However, a small absolute error may be very significant if the low-level action varies between a small range.

We use the learned θ as a seed for the inverse dynamics model reinforcement step of the algorithm detailed in Section 4.2.
The pre-training step is especially useful when we have access to an exploration policy that is similar to the expert’s policy
even if it is suboptimal.

4.2. Inverse Dynamics Model Reinforcement

This phase is where we use the expert’s demonstration as a template to behave in the environment. Depending on the
availability of a reasonably performing exploration policy, the algorithm initializes θ to either the learned θ from the
pre-training phase or random values. With this as a starting point, the agent learns to behave in environment as follows.

RIDM first computes {ãet} on the state-transition pairs of the imitator’s current state to the desired expert’s state, {(st, set+1)},
using θ, then it executes {ãet} in the environment, collects the cumulative environment reward, Renv, and the observed
states, {st}, and tunes θ using CMA-ES by maximizing the fitness f2 given by Equation 3. This procedure repeats until
convergence.

f2 = Renv (3)

where Renv is the cumulative reward from the environment. Unlike in the pre-training step, the expert policy is unknown, so
we do not have access to the actions. It is important to note that while Renv is still used to reinforce the learning of the
inverse dynamics model, the learner is guided by the expert since the inverse dynamics model is used to transition from the
imitator’s current state to the next expert’s state. In this procedure, we use the reward as a way for the learner to explore and
the expert’s state-only demonstration as a template for ideal behavior.

5. Empirical Results
Our experiments focus on robot control tasks in the MuJoCo simulator and SimSpark robot soccer simulator. Visual results
of our algorithm have been hosted online 1.

For these robot control tasks, we model our inverse dynamics model as a PID controller, and are interested in learning the
gains of the controller. We consider the raw state and low-level action of the learner and expert to be the joint angle value for
each joint and the corresponding torque applied to that joint per time-step respectively.

Note that for a given input state-transition and output action, the PID controller enforces a one-to-one correspondence
between each joint in the raw state, stj , and its torque, atj , where the index tj represents the jth joint angle at time-step
t. More concretely, for a given transition of a particular joint angle, the PID controller will output the torque required to
achieve that joint angle transition.

5.1. Experimental Set-up

We conduct our experiments of our algorithm on the MuJoCo physics engine and the RoboCup SimSpark 3D simulator.

1https://drive.google.com/drive/folders/1y3TjeYlS2v8JH-ubnGUcxRpyGY6R8McH

https://drive.google.com/drive/folders/1y3TjeYlS2v8JH-ubnGUcxRpyGY6R8McH


RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration 9

5.1.1. MUJOCO SIMULATOR

We elaborate on the specifics of each domain that we have tested on from the MuJoCo simulator (Todorov et al., 2012). In
all these domains, while the state space provided by the simulator may be extensive, we make use of a very small subset of
the space i.e. only the joint angles at each time-step.

• Reacher. The goal is to move a 2D robot arm to a fixed location. We use a 2 dimensional state and action space. The
original state space is 11 dimensions. Since we simplify the state space to only joint angles, we fix the target location.
The reward per time-step is given by the distance of the arm from the target per time-step and regularization factor of
the actions.

• Ant. The goal is to make a 4-legged ant walk as fast as possible. We use an 8 dimensional state and action space. The
original state space is 111 dimensions. The reward per time-step is given by the change in the global position of the ant,
its forward velocity, regularization of its actions, its contact with the surface, and its survival.

• HalfCheetah. The goal is to make a cheetah walk as fast as possible. We use a 6 dimensional state and action space.
The original state space is 17 dimensions. The reward per time-step is given by the cheetah’s forward velocity and
regularization of its actions.

• Swimmer. The goal is to make a snake-like creature swim as fast as possible in a viscous liquid. We use a 2 dimensional
state and action space. The original state space is 8 dimensions. The reward per time-step is given by the swimmer’s
forward velocity and regularization of its actions.

• Hopper. The goal is to make a 2D one-legged robot hop as fast as possible. We use a 3 dimensional state and action
space. The original state space is 11 dimensions. The reward per time-step is given by the change in the global position
of the hopper, its jump height, its forward velocity, regularization of its actions, and its survival.

We train the experts for each of these domains using trust region policy optimization (TRPO) (Schulman et al., 2015) and
proximal policy optimization (PPO) (Schulman et al., 2017), and selected those with the best performance. We use the
hyperparameters specified in Schulman et al. (2015; 2017) and Henderson et al. (2017b). In our case, TRPO worked best
for Reacher-v2, HalfCheetah-v2, Swimmer-v2, and Hopper-v2 and PPO worked best for Ant-v2.

In our experiments, we evaluate the performance of various benchmark algorithms on the full and raw state spaces.
Additionally, since we do not have a known exploration policy with competent performance in each of these domains, we
skip the pre-training step outlined in Section 4.1.

5.1.2. SIMSPARK ROBOCUP 3D SIMULATION

We describe the relevant components of the RoboCup 3D simulation to our experiments. For a detailed description RoboCup
3D simulation as a whole refer to Section 3.5.

The goal of these experiments is to imitate certain skills of teams that participate in the yearly RoboCup competition. The
challenge that arises is that these teams do not release their codebase. So we do not have access to the code or expert
policies. After every yearly competition, each participating team releases their binary files, a computer readable but not
human readable executable. Using these binary files we artificially create the expert demonstrations by triggering desired
behaviors by, for example, placing the ball in specific locations to induce a long distance kick. In order to retrieve the state
space i.e. the joint angles per time-step for specific tasks, we modify the SimSpark server to output the joint angles of the
agent when performing the task.

In this domain, we use a 20 dimensional state space, where each dimension is the joint value for the respective degree of
freedom and 20 dimensional action space where each dimension is the torque applied to the respective joint.

In our experiments, we are interested imitating two tasks: (1) speed walking and (2) long distance kick-offs. Since SimSpark
does not have built-in reward functions, we design our own reward function. We note that the true expert may have not used
our reward function.

• Speed walking. The goal of this task is to have the agent walk as fast as possible while maintaining stability throughout
the episode. To do so, we define the total reward at the end of the episode to be the cumulative distance travelled per
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time-step with a −5 penalty for falling down. The distance is measured in meters. The reward function focuses on
optimizing speed and stability.

• Long-distance kick-off. The goal of the task is to kick the ball as far as possible with highest possible elevation towards
the center of the goal. To do so, we define the reward function to be

Rkick = (1 + xtotal) · exp
(−θ2
180

)
+ xair · 100

with a −5 penalty for slightly bumping the ball, −10 penalty for falling down, where xtotal is the distance travelled by
the ball along the x-axis, θ is the angle of deviation of the ball’s trajectory from the straight line between the agent
and center of the goal, and xair is the distance along the x-axis for which the ball was travelling in the air. xtotal and
xair are in meters, and θ is in degrees. The reward function values kicks that travel in the air for a long distance and
exponentially decays the reward for off-target kicks.

We use two teams from the RoboCup 3D simulation league, FC Portugal (FCP) and FUT-K, as the experts, and we pre-train
according to Section 4.1 on our team’s walks and kicks since we have access to the actions of these exploration policies.

For SimSpark we report results using only RIDM since it is unfeasible to evaluate GAIL, GAIfO, BCO, and TRPO/PPO on
the SimSpark domain due to the inefficiency of the simulator and sequential nature of these algorithms. For example, by
comparing the two most time intensive tasks, we found that a single episode of the walking task in SimSpark may take up to
10 times as long as a single episode of Ant-v2 on MuJoCo.

5.2. Experimental Results

We evaluate our algorithm based on the learner’s ability to achieve the expert’s performance. We show that by allowing the
agent to explore i.e. maximize the cumulative environment reward and use the expert’s demonstration as a template we
outperform existing methods on the MuJoCo simulator and improve upon the expert’s behaviors in the SimSpark simulator.
The sample complexities for CMA-ES that we were used in our core results are reported in the Table 7 of the Supplementary
Materials.

In addition to the core results shown below, we include additional experiments in the Supplementary Materials when trying
to optimize a different fitness function given by Equation 4, which we elaborate on in that section.

5.2.1. MUJOCO SIMULATOR

For the MuJoCo domain we compare our imitation performance to existing baseline methods, GAIL (Ho and Ermon, 2016),
GAIfO (Torabi et al., 2018b), and BCO (Torabi et al., 2018a), using scaled performance for a particular domain where we
consider 0 to be the performance achieved by a random agent and 1 to be the performance achieved by the expert. Note that
the methods we show in Table 1 use the same settings as our algorithm i.e. a single expert demonstration with raw state
space (only joint angle values per time-step).

When we reduce the task-specific domain knowledge encoded in the state space to only the joint angles, we are hiding
factors, such as distance from the target in a robot arm reaching task, that directly tie to high rewards. We see that methods
such as GAIL (Ho and Ermon, 2016), GAIfO (Torabi et al., 2018b), and BCO (Torabi et al., 2018a) that rely only on this raw
sate space i.e. joint angles and that do not optimize for reward perform quite poorly.2 However, ours is able to significantly
outperform the other methods despite using only the joint angles. We also compare our method to TRPO/PPO (Schulman
et al., 2015; 2017) which focus on maximizing reward. We show that our learner achieves better performance when it is
guided by the expert’s demonstration instead of starting from scratch as done in the TRPO/PPO method. Finally, for a fairer
comparison, we also allow GAIL and GAIfO to undergo RL by taking a linear combination of the reward outputted by their
discriminators and reward from the environment. In these experiments, since the number of joints is relatively small, we use
PD gains for each joint for all the domains in our experiments. The maximum number parameters we are optimizing is for
Ant-v2 (16).

It is important to note that GAIL is the only method that has access to the expert actions. Ours and the remaining methods

2In the supplementary materials, we show that these methods improve significantly when considering the full state space (instead of
the raw state space)
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Table 1. Benchmark comparisons of state-of-the-art methods on the MuJoCo domain to our method on the same single expert demonstration
on the raw state space (exclusively joint angles). Mean and standard deviations are over 100 policy runs. Performance of 0 is random and
1 is expert. *Note that GAIL is the only method that has access to the expert actions. **Since we use a deterministic policy (fixed PID
gains), we do not report mean or standard deviations of our algorithm.

Domain

Optimization Reacher-v2 Ant-v2 HalfCheetah-v2 Swimmer-v2 Hopper-v2

GAIL* (Ho and Ermon, 2016) 1.00 (0.00) 0.08 (0.07) 0.48 (0.18) 0.34 (0.04) 0.15 (0.09)
GAIL* + RL 1.00 (0.00) 0.26 (0.04) 0.96 (0.15) 0.85 (0.04) 0.27 (0.03)
GAIfO (Torabi et al., 2018b) 0.60 (0.09) 0.06 (0.08) 0.31 (0.19) 0.07 (0.00) 0.05 (0.02)
GAIfO + RL 1.00 (0.00) 0.23 (0.06) 0.78 (0.21) 0.44 (0.10) 0.23 (0.08)
BCO (Torabi et al., 2018a) -0.08 (0.16) 0.00 (0.02) 0.08 (0.04) 0.00 (0.03) 0.00 (0.01)
TRPO/PPO (Schulman et al., 2015; 2017) 0.99 (0.00) 0.20 (0.03) 0.37 (0.01) 0.14 (0.01) 0.18 (0.11)

RIDM (ours)** 1.00 0.55 1.09 1.05 0.41

do not have access to the expert actions. We used either TRPO or PPO depending on which one gave better performance
when training the initial experts on the full state space.

Refer to the Supplementary Experiments for the following: (1) Table 6: performance of baseline methods using a single
demonstration, but exposed to the full state space (2) Table 8: performance of our algorithm using a different fitness function
given by Equation 4, which we elaborate on in that section.

5.2.2. SIMSPARK ROBOCUP 3D SIMULATION

For each task, speed walking and long distance kick offs, we report the results for each expert team. The units are as follows:
speeds are in meter per second, distances are in meters, and angles are in degrees. In these experiments, since the number of
joints is quite high, we use global PD gains common to all joints, so we optimize only 2 parameters.

Table 2 and Table 4 shows the performance of expert policies we are trying to imitate. We also include the performance
metrics and reward of our agent, which we use in the pre-training phase as outlined in Section 4.1. Since the experts do not
necessarily use our reward function and that we do not have access to the code, we cannot concretely report the reward, the
air distance, and the angle offset of these experts. However, the numbers we report are empirical estimates

Table 3 and Table 5 show the results of using RIDM. We report the performance achieved using randomly initialized PD
gains, after pre-training, and after maximizing only the cumulative environment reward (RIDM).

We can see that by combining reinforcement learning with the expert demonstration, we are able to improve upon performance
metrics relevant to the specific task compared to the expert’s original performance.

Refer to the Table 9 and Table 10 in the Supplementary Materials for the performance of our algorithm for speed-walking
and long distance kick-offs respectively when optimizing a different fitness function given by Equation 4, which we
elaborate on in that section.

Table 2. Expert and pre-training agent performance values for speed walking. Note that we cannot concretely measure the reward achieved
by the experts since they do not necessarily use our reward function and we do not have access to their code. Hence, these are empirical
estimates. The units of speed are in meter per second.

Team Real Speed Reward

FCP 0.69 8.35
FUT-K 0.70 8.47

Pre-known πpre 0.71 8.60
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Table 3. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 2, and PD gains after
optimizing Equation 3 (RIDM) when imitating other teams for speed walking. We measure performance based on our reward definition
and the actual speed. The units of speed are in meter per second.

Expert Fitness Speed Reward

FCP random 0.00 -5.00
f1 0.28 3.35
RIDM (ours) 0.81 9.82

FUT-K random 0.00 -5.00
f1 0.18 2.15
RIDM (ours) 0.89 10.70

Table 4. Expert and pre-training agent performance metric values for long distance kick-offs. Note that we cannot concretely measure the
reward, air distance, and angle offset achieved by the experts since they do not necessarily use our reward function and we do not have
access to their code. Hence, these are empirical estimates. The units of distances are in meters and angles are in degrees.

Team Air Distance Distance Angle Offset Reward

FCP 8.00 17.00 — 808.00
FUT-K 0.00 10.00 — 1.00

Pre-known πpre 2.09 4.82 4.11 199.00

Table 5. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 2, and PD gains after
optimizing Equation 3 (RIDM) when imitating other teams for long-distance kick offs. We measure performance based on our reward
definition, the (air) distance travelled, and angle offset. The units of distances are in meters and angles are in degrees.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP random 0.00 0.00 0.00 -9.00
f1 0.00 2.61 1.07 -11.41
RIDM (ours) 13.78 24.05 3.70 1386.00

FUT-K random 0.00 0.00 0.00 -9.00
f1 0.00 1.98 9.46 -13.19
RIDM (ours) 10.62 16.23 3.65 1064.00

6. Discussion and Future Work
In this work, we showed that our proposed algorithm, reinforced inverse dynamics modeling (RIDM), can achieve competent
level of performance when a learning agent is mimicking an expert without access to expert actions, with only a single
expert demonstration, and using the raw state space on the MuJoCo and SimSpark simulators. In particular, we showed that
on the MuJoCo domain existing imitation methods heavily rely on reward information to be encoded in the state space, but
our method is able to significantly outperform existing imitation techniques without this encoding in the state space. We
also showed that by combining an expert demonstration with reward, we outperform methods that maximize only reward
from scratch. On the SimSpark robot soccer simulator, we showed that we can develop a faster walk and longer distance
kick than that of the experts.

While this lays down a framework for combining reinforcement learning and imitation from observation from a single
demonstration with raw state space, there are several possible future directions. First, while CMA-ES is tremendously
effective, its sample inefficiency poses a problem when applied to real robots. We would like to use a more sample efficient
reinforcement learning algorithm. Second, our method focuses on the control aspect of imitation from observation. We
would like to integrate a perception component to the algorithm i.e. use raw video demonstrations to imitate the expert.
Third, we would like to incorporate the imitated walking and kicking skills into our RoboCup 3D simulation team.
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A. Supplementary Materials
Here we include additional experiments. The section is organized as follows. Section A.1 presents performance of the
baseline methods when exposed to only a single expert demonstration using the full state space. Section A.3 discusses the
performance of our algorithm when trying to optimize a different fitness function f3 given by Equation 4 instead of f2
given by Equation 3 on the MuJoCo and SimSpark simulators. Section A.4 includes additional experiments with various
PID controller architectures.

A.1. Baseline Methods with Full State Space on MuJoCo

Table 6 shows the high reliance that existing methods have on task-specific domain knowledge to be encoded in the state
space. However, we see that this may not necessarily be enough, since a single expert demonstration is not enough to fully
imitate the expert. This is understandable for GAIfO and BCO since there is no access to the expert actions. We also see
GAIL perform poorly on Ant-v2, this may be the case since the full state space of Ant-v2 is 111 dimensions, and a single
expert demonstration may not be enough to imitate the expert.

Table 6. Scaled performances of the baseline imitation learning and from observation algorithms on the MuJoCo domain using the full
state space and a single expert demonstration. Performance of 0 is random and 1 is expert. *GAIL is the only method that has access to
the true expert actions.

Domain

Optimization Reacher-v2 Ant-v2 HalfCheetah-v2 Swimmer-v2 Hopper-v2

GAIL* (Ho and Ermon, 2016) 1.00 (0.00) -0.04 (0.11) 0.90 (0.03) 0.88 (0.05) 0.95 (0.03)
GAIfO (Torabi et al., 2018b) 0.69 (0.05) -0.24 (0.36) 0.58 (0.06) 0.49 (0.04) 0.92 (0.05)
BCO (Torabi et al., 2018a) 0.86 (0.02) 0.10 (0.07) 0.58 (0.33) 0.85 (0.02) 0.02 (0.02)

A.2. Sample Complexities for CMA-ES

We note the number of training iterations and populations sizes used for each domain in our core results in Section 5.2. It is
important to mention that these are not necessarily lower-bounds since we did not optimize for sample complexity.

Table 7. Sample complexities of CMA-ES optimization algorithm for different domains on MuJoCo and SimSpark.

Domain # Parameters # Training Iterations # Population Size

Reacher-v2 4 50 30
Ant-v2 16 300 150
HalfCheetah-v2 12 150 75
Swimmer-v2 4 75 30
Hopper-v2 6 250 150
SimSpark FCP (Expert 1) Walk 2 50 25
SimSpark FUT-K (Expert 2) Walk 2 50 25
SimSpark FCP (Expert 1) Kick 2 50 25
SimSpark FUT-K (Expert 2) Kick 2 50 25

A.3. Reward Maximization + State Distance Minimization Fitness Function

Tables 8, 9, and 10 show the performance when we try to maximize the cumulative reward from the environment and the
negative of the absolute normalized error between the learner and expert states given by f3. We report results using f3 only
for PID architectures that gave us the best results in Section 5.2.

f3 = αRenv −
β

T

J∑
j=1

T∑
t=1

|stj − setj |
max (sej)−min (sej)

(4)
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where Renv is the cumulative reward from the environment, T is the length of the episode, J is the size of the expert raw
state we are considering, such as the number of joints angles in a robot control task at given time-step, α is the scalar weight
of Renv, β is the scalar weight on the normalized absolute error between the learner and expert states, st is the learner’s
state, set is the expert’s state, sej are all the values for the jth instance of the raw state across all T time-steps, and the tj index
corresponds to the jth joint at time-step t. We normalize the difference between states for the same reasons we mentioned
for Section 4.1. Here, α and β were accordingly set so that the order of magnitudes of the two operands were similar.

We found that when β 6= 0, we either get performance similar to when β = 0 or degraded performance. This degraded
performance may be so for the similar reason that methods such as GAIL (Ho and Ermon, 2016), GAIfO (Torabi et al.,
2018b), and BCO (Torabi et al., 2018a) that rely only on the expert demonstration do not perform well on the raw state
space as shown in Table 1.

Table 8. Scaled performances of our method on a single expert demonstration on the raw state space (exclusively joint angles) when
optimizing Equation 4 with β 6= 0 using PID architectures that gave us the best results shown in Table 1. Our method uses the
environment reward and demonstration.

Domain Fitness Performance

Reacher-v2 f3(α = 0, β = 1) 0.95
f3(α = 1, β = 20) 1.00
f3(α = 1, β = 40) 1.00
f3(α = 1, β = 60) 1.00

Ant-v2 f3(α = 0, β = 1) 0.22
f3(α = 1, β = 250) 0.51
f3(α = 1, β = 500) 0.52
f3(α = 1, β = 750) 0.50

HalfCheetah-v2 f3(α = 0, β = 1) 0.00
f3(α = 1, β = 250) 1.08
f3(α = 1, β = 500) 0.82
f3(α = 1, β = 750) 1.03

Swimmer-v2 f3(α = 0, β = 1) 0.15
f3(α = 1, β = 75) 1.03
f3(α = 1, β = 150) 1.02
f3(α = 1, β = 225) 1.01

Hopper-v2 f3(α = 0, β = 1) 0.05
f3(α = 1, β = 250) 0.35
f3(α = 1, β = 500) 0.33
f3(α = 1, β = 750) 0.39

Table 9. Performance of our control algorithm when optimizing Equation 4 with β 6= 0 using PID architectures that gave us the best
results shown in Table 3 when imitating other teams for speed walking. We measure performance based on our reward definition and the
actual speed. The units of speed are meter per second.

Expert Fitness Speed Reward

FCP f3(α = 0, β = 1) 0.70 8.42
f3(α = 1, β = 0.001) 0.65 7.75
f3(α = 1, β = 0.005) 0.76 9.21
f3(α = 1, β = 0.05) 0.72 8.69

FUT-K f3(α = 0, β = 1) 0.33 3.92
f3(α = 1, β = 0.5) 0.77 9.24
f3(α = 1, β = 1) 0.71 8.55
f3(α = 1, β = 1.5) 0.72 8.71
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Table 10. Performance of our control algorithm when optimizing Equation 4 with β 6= 0 using PID architectures that gave us the best
results shown in Table 5 when imitating other teams for long-distance kick offs. We measure performance based on our reward definition,
the (air) distance travelled, and angle offset. The units of distances are meters and angles are in degrees.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP f3(α = 0, β = 1) 0.00 2.90 12.27 -13.31
f3(α = 1, β = 300) 12.27 20.41 4.80 1230.00
f3(α = 1, β = 600) 7.37 21.18 3.21 742.00
f3(α = 1, β = 900) 7.43 22.35 2.51 750.00

FUT-K f3(α = 0, β = 1) 0.00 2.29 12.65 -13.65
f3(α = 1, β = 250) 6.06 16.41 1.14 608.00
f3(α = 1, β = 500) 5.94 15.69 1.60 595.00
f3(α = 1, β = 750) 6.33 16.27 0.81 635.00

A.4. PID Controller Architecture

In our experiments, since we focused on robotic control tasks, we used the PID controller as the inverse dynamics model. In
our core results, certain architectures of the PID controller gave us the best result. In this section, we include additional
results when trying other architectures to the PID controller.

In general, we found the following.

• Introducing the integral gain. In general, we found that it degraded performance except on Swimmer-v2. We found that
the integral factor increased in value very quickly, which caused very erratic behavior due to large torques. This may
have made it difficult for CMA-ES to converge to an optimal fitness. For Swimmer-v2, we were optimizing only 6
parameters, which may have been much more manageable for CMA-ES to converge.

• Global gains for all joints vs. local gains for each joint. We would except local gains per joint to give the best
performance since it is less restrictive than global gains. We found that this was true for MuJoCo experiments. However,
we found that global gains worked better in SimSpark. We hypothesize that introducing local gains in SimSpark creates
more parameters than manageable (upto 60 parameters) for CMA-ES to optimize. In the limit, CMA-ES may be able to
converge to the optimal fitness, but this was involving sample complexities much larger than those specified in Table 7.
Interestingly, we found that the experiments in Table 17 achieved reasonably good results since CMA-ES was setting
the integral gain close to 0.

A.4.1. MUJOCO EXPERIMENTS

Table 11. Scaled Performances when using global PD gains i.e. a single P and D gain for all joints. Performance of 0 is random and 1 is
expert.

Domain Performance

Reacher-v2 1.00
Ant-v2 0.49
HalfCheetah-v2 0.22
Swimmer-v2 0.90
Hopper-v2 0.35
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Table 12. Scaled Performances when using local PID gains i.e. P, I, and D gains for each joint. Performance of 0 is random and 1 is expert.

.

Domain ? Performance

Reacher-v2 0.99
Ant-v2 0.01
HalfCheetah-v2 0.90
Swimmer-v2 1.00
Hopper-v2 0.39

Table 13. Scaled Performances when using global PID gains i.e. a single P, I, and D gain for all joints. Performance of 0 is random and 1
is expert.

Domain Performance

Reacher-v2 1.00
Ant-v2 0.44
HalfCheetah-v2 0.46
Swimmer-v2 0.93
Hopper-v2 0.36

A.4.2. SIMSPARK ROBOCUP 3D SIMULATION EXPERIMENTS

The results using global PD gains were reported in the core results in Table 3 and Table 5.

Table 14. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 2, and PD gains after
optimizing Equation 3 (RIDM) when imitating other teams for speed walking. We measure performance based on our reward definition
and the actual speed. The units of speed are in meter per second. We used local P and D gains for each joint, and optimized 40 parameters.

Team Fitness Real Speed Reward

FCP random 0.00 -5.00
f1 0.00 -5.00
RIDM (ours) 0.00 -5.00

FUT-K random 0.00 -5.00
f1 0.00 -5.00
RIDM (ours) 0.00 -5.00

Table 15. Performance of randomly initialized PID gains, PID gains after pre-training i.e. optimizing Equation 2, and PID gains after
optimizing Equation 3 (RIDM) when imitating other teams for speed walking. We measure performance based on our reward definition
and the actual speed. The units of speed are in meter per second. We used local P, I, and D gains for each joint, and optimized 60
parameters.

Team Fitness Real Speed Reward

FCP random 0.00 -5.00
f1 0.00 -5.00
RIDM (ours) 0.08 -4.01

FUT-K random 0.00 -5.00
f1 0.00 -5.00
RIDM (ours) 0.06 -4.22
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Table 16. Performance of randomly initialized PID gains, PID gains after pre-training i.e. optimizing Equation 2, and PID gains after
optimizing Equation 3 (RIDM) when imitating other teams for speed walking. We measure performance based on our reward definition
and the actual speed. The units of speed are in meter per second. We used global P, I, and D common to all joints, and optimized 3
parameters.

Team Fitness Real Speed Reward

FCP random 0.00 -5.00
f1 0.05 -4.39
RIDM (ours) 0.56 1.76

FUT-K random 0.00 -5.00
f1 0.04 -4.55
RIDM (ours) 0.06 -4.24

Table 17. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 2, and PD gains after
optimizing Equation 3 (RIDM) when imitating other teams for long-distance kick offs. We measure performance based on our reward
definition, the (air) distance travelled, and angle offset. The units of distances are in meters and angles are in degrees. We used local P and
D gains for each joint, and optimized 40 parameters.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP random 0.00 0.00 0.00 -9.00
f1 0.00 5.07 22.14 -14.60
RIDM (ours) 0.00 4.80 19.76 -14.33

FUT-K random 0.00 0.00 0.00 -9.00
f1 0.00 0.21 73.26 -15.00
RIDM (ours) 0.00 0.23 76.12 -15.00

Table 18. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 2, and PD gains after
optimizing Equation 3 (RIDM) when imitating other teams for long-distance kick offs. We measure performance based on our reward
definition, the (air) distance travelled, and angle offset. The units of distances are in meters and angles are in degrees. We used local P, I,
and D gains for each joint, and optimized 60 parameters.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP random 0.00 0.93 46.38 -15.00
f1 0.00 1.63 33.97 -14.99
RIDM (ours) 0.54 4.52 6.33 43.41

FUT-K random 0.00 1.24 115.63 -15.00
f1 0.00 0.89 64.53 -15.00
RIDM (ours) 0.00 0.55 4.63 -13.65
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Table 19. Performance of randomly initialized PID gains, PID gains after pre-training i.e. optimizing Equation 2, and PID gains after
optimizing Equation 3 (RIDM) when imitating other teams for long-distance kick offs. We measure performance based on our reward
definition, the (air) distance travelled, and angle offset. The units of distances are in meters and angles are in degrees. We used global P, I,
and D common to all joints, and optimized 3 parameters.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP random 0.00 0.49 76.89 -15.00
f1 8.31 20.26 4.06 835.39
RIDM (ours) 10.50 23.12 4.96 1056.04

FUT-K random 0.00 2.09 25.87 -14.92
f1 2.05 5.23 8.14 194.30
RIDM (ours) 4.88 13.36 2.39 486.91
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