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Supervisor: Peter Stone

Temporal difference (TD) learning is one of the main foundations of modern reinforcement

learning. This thesis studies the use of TD(0), a canonical TD algorithm, to estimate the

value function of a given evaluation policy from a batch of data. In this batch setting, we

show that TD(0) may converge to an inaccurate value function because the update following

an action is weighted according to the number of times that action occurred in the batch – not

the true probability of the action under the evaluation policy. To address this limitation, we

introduce policy sampling error corrected -TD(0) (PSEC-TD(0)). PSEC-TD(0) first estimates

the empirical distribution of actions in each state in the batch and then uses importance

sampling to correct for the mismatch between the empirical weighting and the correct weighting

for updates following each action. We refine the concept of a certainty-equivalence estimate

and argue that PSEC-TD(0) converges to a more desirable fixed-point than TD(0) for a

fixed batch of data. Finally, we conduct a thorough empirical evaluation of PSEC-TD(0) on

three batch value function learning tasks in a variety of settings and show that PSEC-TD(0)

produces value function estimates with lower mean squared error than the standard TD(0)

algorithm.
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Chapter 1

Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) algorithms have been applied to a

variety of sequential-decision making problems such as robot manipulation (Kober et al.,

2013; Gu et al., 2016) and autonomous driving (Sallab et al., 2017). Many RL algorithms

learn an optimal control policy by relying on the value function, a function that estimates

the expected return from each state when following a particular policy (Puterman and Shin,

1978; Bertsekas, 1987; Konda and Tsitsiklis, 2000). These algorithms require accurate value

function estimation with finite data.

One of the most fundamental approaches to value function learning is the temporal

difference (TD) algorithm (Sutton, 1988). In this work, we focus on improving the accuracy

of the value function learned by batch TD. Batch TD computes temporal difference updates

for a value function from a given batch of state-action-reward-next-state transitions.

In this thesis, we show that batch TD(0) may converge to an inaccurate value function

because it ignores the known action probabilities of the evaluation policy. Consider a single

state in which the evaluation policy selects between action a1 or a2 with probability 0.5. If, in

the finite batch of observed data, a1 actually happens to occur twice as often as a2 then TD

updates following a1 will receive twice as much weight as updates following a2, even though

in expectation they should receive the same weight. We describe this finite-sample error in

the value function estimate as policy sampling error.

To correct for policy sampling error we propose to first estimate the maximum likelihood

policy from the observed data and then use importance sampling (Precup et al., 2000a) to
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account for the mismatch between the frequency of sampled actions and their true probability

under the evaluation policy. Variants of this technique have been successful in multi-armed

bandits (Li et al., 2015; Narita et al., 2018; Xie et al., 2018), policy evaluation (Hanna et al.,

2019), and policy gradient learning (Hanna and Stone, 2019). However, we are the first to

study this technique for value function estimation. We call our new value function learning

algorithm batch policy sampling error corrected-TD(0) (PSEC-TD(0)).

1.1 Research Question and Contributions

This thesis aims to answer the following question:

Given a fixed batch of data, generated by some policy and transition dynamics

distribution, does TD learning compute an accurate value function?

In this work, we provide a theoretical and empirical analysis showing that single step

temporal difference learning does not compute an accurate value function from a fixed batch

of data. In doing so, we make the following contributions:

1. Show that the certainty-equivalence estimate, the fixed point that batch TD(0) converges

to, is inaccurate with respect to the true value function.

2. Introduce the PSEC-TD(0) algorithm that reduces the policy sampling error in batch

TD(0).

3. Refine the concept of a certainty-equivalence estimate for TD-learning (Sutton, 1988)

and provide theoretical justification that PSEC-TD(0) converges to a more desirable

fixed-point than TD(0).

4. Empirically show that the PSEC correction is applicable to a TD(0) variant, least

squares TD(0) (LSTD) (Bradtke and Barto, 1996).

5. Empirically analyze PSEC-TD(0) in the tabular and function approximation setting.

1.2 Thesis Outline

The thesis is organized as follows: Chapter 2 goes over background and notation used

throughout this document, and the related literature, Chapter 3 extends the proof of Sutton
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(1988) and shows that batch linear TD(0) converges to the certainty-equivalence estimate

in the per-step reward and discounted settings in a Markov reward process (MRP) and

Markov decision process (MDP). Chapter 4 proves that PSEC-TD(0) converges to the new

and more accurate fixed point, and empirically analyzes PSEC in the tabular and function

approximation settings. Finally, Chapter 5 discusses future work and concludes.
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Chapter 2

Background

This chapter introduces notation and terminology, formally specifies the batch value function

learning problem, and discusses related work.

2.1 Notation and Definitions

Following the standard MDPNv1 notation (Thomas, 2015), we consider a Markov decision

process (MDP) with state space, S, action space A, reward function, R, transition dynamics

function, P , and discount factor γ (Puterman, 2014). In any state, s, an agent selects

stochastic actions according to a policy π, A ∼ π(·|s). After taking an action, a, in state s

the agent transitions to a new state s′ ∼ P (·|s, a) and receives reward R(s, a, s′). We assume

S and A to be finite; however, our experiments also consider infinite sized S. We consider the

episodic, discounted, and finite horizon setting. The policy and MDP jointly induce a Markov

reward process (MRP), in which the agent transitions between states s and s′ with probability

P (s′|s) and receives reward R(s, s′). Finally, x(s) : S → Rd gives a column feature vector for

each state s ∈ S.

We are concerned with computing the value function, vπ : S → R, that gives the value

of any state. The value of a particular state is the expected sum of discounted rewards when

following policy π from that state:

vπ(s) := Eπ

[ L∑
k=0

γkRt+k+1

∣∣∣∣ St = s

]
, ∀s ∈ S (2.1)
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where L is the terminal time-step and the expectation is taken over the distribution of future

states, actions, and rewards under π and P .

2.1.1 Matrix Notation for Proofs

In this section, we also introduce matrix-related notation, which is based on the above notation,

specifically for the proofs in Chapters 3, 4, and Appendix A.1. Part of these notations are

derived from Sutton (1988).

We refer to state features using vectors indexed by the state. So features x(i) for state

i is referred to as xi. Reward r(j|i, a) (the reward for transitioning to state j from state i

after taking action a) is referred to by raij . The policy π(a|i) is πa
i and the transition function

P (j|i, a) is accordingly the value paij . N and T are the set of non-terminal and terminal states

respectively, and A is the set of possible actions. D is the batch of data used to train the

value function. For any transition from a non-terminal state to a (non-) terminal state, i→ j,

1 ≤ i ≤ |N | and 1 ≤ j ≤ |N ∪ T |. Finally, the maximum-likelihood estimate (MLE) of the

above quantities according to D, is given with a hat ( ˆ ) on top of the quantity. Further

notations that are used in the proofs are explained when introduced.
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Notation Description Dimension

S set of states |S|

Ŝ set of states that appear in batch D |Ŝ|

A set of actions |A|

Âi set of actions that appear in batch D when agent is in state i |Âi|

N ⊂ S non-terminal states |N |

N̂ ⊂ Ŝ non-terminal states that appear in batch D |N̂ |

T ⊂ S terminal states |T |

T̂ ⊂ Ŝ terminal states that appear in batch D |T̂ |

I identity matrix |N | × |N |

pπjk probability of transitioning from state j to state k under a policy, π -

pajk probability of transitioning from state j to state k after taking action a -

r̄j mean reward when transitioning from state j -

r̄aij
mean reward when transitioning from state i to state j after taking

action a
-

Q Qjk := pπjk |N | × |N |

[m]i
expected reward on transitioning from state i to non-terminal state j

i.e.
∑

j∈N pπijrij or
∑

j∈N
∑

a∈A πa
i p

a
ijr

a
ij

|N |

[h]i
expected reward on transitioning from state i to non-terminal state j to

terminal state i.e.
∑

j∈T pπijrij or
∑

j∈T
∑

a∈A πa
i p

a
ijr

a
ij

|N |

dπe(i) ∀i ∈ S weighted proportion of time spent in state i under policy πe -

2.2 Batch Value Prediction

This thesis investigates the problem of approximating, vπe , given a batch of data, D and

an evaluation policy πe. Let a single episode, τ , be defined as τ := (S0, A0, R0, S1, ...,

SLτ−1 , ALτ−1 , RLτ−1), where Lτ is the length of the episode τ . The batch of data, D, consists

of m episodes, i.e., D := {τi}m−1
i=0 . The policy that generated the batch of data is called the

behavior policy, πb. If πb is the same as πe for all episodes then learning is said to be done

on-policy ; otherwise it is off-policy.

6



In batch value prediction, a value function learning algorithm uses a fixed batch of

data to learn an estimate, v̂πe , that approximates the true value function vπe . In this work,

we focus on the linear approximation of vπe :

v̂πe(s) := wTx(s)

where we seek to find a weight vector, w, such that wTx(s) approximates the true value,

vπe(s). The error of the predicted value function, v̂πe , with respect to the true value function,

vπe , is measured by calculating the mean squared value error between vπe(s) and v̂πe(s) ∀s ∈ S

weighted by the proportion of time spent in each state under policy πe, dπe(s). Thus, we seek

to find a weight vector w that minimizes:

MSVE(w) :=
∑
s∈S

dπe(s)

(
vπe(s)−wTx(s)

)2

(2.2)

2.3 Batch Linear TD(0)

A fundamental algorithm for value prediction is the single-step temporal difference learning

algorithm, TD(0) (Sutton, 1988). Algorithm 1 gives pseudo-code for the batch linear TD(0)

algorithm described by Sutton (1988).
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Algorithm 1 Batch Linear TD(0) to estimate vπe

1: Input: policy to evaluate πe, behavior policy πb, batch D, linear value function, v̂ :

S × Rd → R, step-size α > 0, convergence threshold ϵ > 0

2: Initialize: weight vector w arbitrarily (e.g.: w := 0)

3: Initialize: update aggregation vector u := 0

4: while ∆w ≥ ϵ do

5: for each episode, τ ∈ D do

6: for each transition, (S,A,R, S′) ∈ τ do

7: ŷ ← R+ γwTx(S′)

8: ρ← πe(A|S)
πb(A|S) {for on-policy, πb = πe}

9: u← u+
[
ρŷ −wTx(S)

]
x(S)

10: end for

11: end for

12: w ← w + αu {batch update}

13: u← 0 {clear aggregation}

14: end while

Sutton (1988) proved that batch linear TD(0) converges to a fixed point in the on-policy

case i.e. when πe = πb. An off-policy batch TD(0) algorithm uses importance sampling

ratios to ensure that the expected update is the same as it would be if actions were taken

with πe instead of πb (Precup et al., 2000a). Unlike on-policy TD(0), off-policy TD(0) is not

guaranteed to converge (Baird, 1995).

2.4 Related Work

In this section, we discuss the related literature to our work.

2.4.1 Estimating the Behavior Policy

The idea of estimating the behavior policy and applying importance sampling has been

motivated by prior work. Li et al. (2015) estimates the behavior policy in their REG estimator

for off-policy evaluation to achieve a lower mean squared error than when using the true

8



behavior policy. Narita et al. (2018) show that estimating the behavior policy achieves

lower variance than that of other estimators when estimating expected reward. Xie et al.

(2018) introduce an approach called Maximum Likelihood Inverse Propensity Scoring (MLIPS)

that uses a maximum likelihood estimate of the policy from a batch of data in the inverse

propensity weights instead of the true policy to achieve an unbiased and lower mean squared

error estimator. Hirano et al. (2003) and Rosenbaum (1987) show that propensity scoring

techniques work better when using the estimated behavior policy over the true behavior policy.

Henmi et al. (2007) and Delyon and Portier (2016) show that using the maximum likelihood

of the sampling distribution improved the asymptotic variance in numerical integration tasks

than when using the true sampling distribution. Our work is distinct from all these works in

that they focus on the multi-armed bandit and causal inference settings, and we focus on the

full Markov decision process (MDP).

There has also been work that uses importance sampling with an estimated behavior

policy in the MDP setting. Hanna et al. (2019) introduce a family of methods called regression

importance sampling methods (RIS) and show that they have lower variance than importance

sampling with the true behavior policy when doing policy evaluation. Hanna and Stone (2019)

also show that a similar technique led to more sample-efficient policy gradient learning. On

the other hand, there has also been work by Farajtabar et al. (2018) who show that estimating

the behavior policy may result in higher variance in importance sampling in MDPs when the

estimation of the behavior policy is done using data different from the data used for off-policy

evaluation. In contrast, our work differs in the following ways: 1) it focuses on value function

learning, where the focus is on learning the expected return at every state visited by the agent

instead of across a set of actions (multi-armed bandit) or for some start states that are a

subset of all the states the agent visits, 2) it estimates the behavior policy on the same data

used to learn the value function, and 3) it is focused on the on-policy setting, but is also

applicable in the off-policy setting.

2.4.2 Reducing Sampling Error

PSEC-TD(0) corrects policy sampling error through importance sampling with an estimated

behavior policy. Other works avoid policy sampling error entirely by computing analytic
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expectations. Expected SARSA (van Seijen et al., 2009), learns action-values by analytically

computing the expected return of the next state during bootstrapping as opposed to using

the value of the sampled next action. The Tree-backup algorithm (Precup et al., 2000b)

extends Expected SARSA to a multi-step algorithm. Q(σ) (Asis et al., 2017) unifies SARSA

(Sutton, 1996; Rummery and Niranjan, 1994), Expected SARSA, and Tree-backups, to find a

balance between sampling and analytic expectation computation (σ = 0 is the Tree-backup

algorithm and σ = 1 is SARSA). Similarly, there have been more advanced methods that

combine Q(σ) with eligibility traces to reduce sampling error (Yang et al., 2018). All these

approaches rely on computing the analytic expectation over the actions on the state that they

are bootstrapping on. Our work is distinct from these in that we do not require an analytic

expectation to be computed and we focus on learning state values which may be preferable

for prediction as well as for a variety of actor-critic approaches (Konda and Tsitsiklis, 2000;

Mnih et al., 2016). To the best of our knowledge, no other approach exists for correcting

policy sampling error when learning state values.

2.5 Summary

In this chapter, we established the notation and definitions used throughout this document,

described batch value function learning, detailed a fundamental batch value function learning

algorithm, batch linear TD(0), and surveyed the relevant literature.
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Chapter 3

Convergence of Batch Linear TD(0)

In this chapter, we discuss the convergence of batch linear TD(0) to a fixed-point, the certainty

equivalence estimate for the underlying Markov Reward Process (MRP). We refine this concept

to better reflect our objective of evaluating a policy in an MDP and then prove that batch

TD(0) converges to an equivalent fixed point that ignores knowledge of the known evaluation

policy, πe, leading to inaccuracy in the value function estimate. This result motivates our

proposed solution algorithm, which we discuss in Chapter 4.

3.1 Additional Notational Setup

Before presenting the definitions and theory, we introduce additional notation and assumptions.

In this chapter, we assume that we are in the on-policy setting (πb = πe). Let Ŝ be the set of

states and Â be the set of actions that appear in D and let R̄(sj) be the mean reward received

when transitioning from state sj in the batch D. Finally, if the notation includes a hat (ˆ), it

is the maximum-likelihood estimate (MLE) according to D. For example, π̂ is the MLE of πb.

3.2 Convergence to the MRP Certainty Equivalence Estimate

Sutton (1988) proved that batch linear TD(0) converges to the certainty equivalent estimate.

That is, it converges to the exact value function of the maximum likelihood MRP according to

the observed batch. This exact value function can be calculated using dynamic programming

(Bellman, 2003; Bertsekas, 1987) with the MLE MRP. We call this value function estimate

11



the Markov reward process certainty equivalence estimate (MRP-CEE).

Definition 1. Markov Reward Process Certainty Equivalence Estimate (MRP-CEE) Value

Function

The MRP-CEE is the value function v̂MRP that, ∀sj , sk ∈ Ŝ, satisfies:

v̂MRP(sj) = R̄(sj) + γ
∑
k∈Ŝ

P̂ (sk|sj)v̂MRP(sk). (3.1)

Having now defined the MRP-CEE value function, we prove that batch TD(0) converges

to the MRP-CEE value function. This fact was first proven by Sutton (1988) (see Theorem 3

of Sutton (1988)), however the original proof only considers rewards upon termination and no

discounting. The extension to rewards per-step and discounting is straightforward, but to

the best of our knowledge has not appeared in the literature before. Following the proof by

Sutton (1988), we prove the extension here as a first step before extending the proof to an

MDP, where the inefficiency of TD(0) becomes clear.

Note that in Theorem 1, we show that batch linear TD(0) converges to an equivalent

form of Equation (3.1) in matrix notation (see, Section 2.1.1 for details on this notation):

v̂(i) =
[
(I − γQ̂)−1(m̂+ ĥ)

]
i

(3.2)

In Appendix A.1.2, we show that Equation (3.1) and Equation (3.2) are equivalent.

Theorem 1 (Batch Linear TD(0) Convergence). For any batch whose observation vectors

{x(s)|s ∈ Ŝ} are linearly independent, there exists an ϵ > 0 such that, for all positive α < ϵ

and for any initial weight vector, the predictions for linear TD(0) converge under repeated

presentations of the batch with weight updates after each complete presentation to the fixed-point

(3.2).

Proof. Batch linear TD(0) makes an update to the weight vector, wn (of dimension, length of

the feature vector), after each presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1)−wT
nxt

]
xt

12



where D is the batch of episodes, Lτ is the length of each episode τ , and α is the learning rate.

We can re-write the whole presentation of the batch of data in terms of the number of

times there was a transition from state i to state j in the batch i.e. ĉij = d̂ip̂ij , where d̂i is

the number of times state i ∈ N̂ appears in the batch.

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1 −wT
nxt)

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

ĉij
[
(r̄ij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij
[
(r̄ij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij(r̄ij + γwT
nxj)xi − α

∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij(w
T
nxi)xi

= wn + α
∑
i∈ ̂̂N

d̂ixi

∑
j∈N̂∪T̂

p̂ij(r̄ij + γwT
nxj)− α

∑
i∈N̂

d̂i(w
T
nxi)xi

∑
j∈N̂∪T̂

p̂ij

= wn + α
∑
i∈N̂

d̂ixi

 ∑
j∈N̂∪T̂

p̂ij(r̄ij + γwT
nxj)−wT

nxi

 ∑
j∈N̂∪T̂

p̂ij = 1

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

p̂ij(r̄ij + γwT
nxj)

+

∑
j∈T̂

p̂ij r̄ij

−wT
nxi

 If xj ∈ T̂ ,wT
nxj = 0

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

p̂ij r̄ij

+

γ
∑
j∈N̂

p̂ijw
T
nxj

+

∑
j∈T̂

p̂ij r̄ij

−wT
nxi



wn+1 = wn + αX̂D̂
[
m̂+ γQ̂X̂Twn + ĥ− X̂Twn

]
(3.3)

where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with

columns, xi ∈ Ŝ and D̂ is a diagonal matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i. Given

the successive updates to the weight vector wn, we now consider the actual values predicted

as the following by multiplying X̂T on both sides:
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X̂Twn+1 = X̂Twn + αX̂T X̂D̂
(
m̂+ ĥ+ γQ̂X̂Twn − X̂Twn

)
= X̂Twn + αX̂T X̂D̂

(
m̂+ ĥ

)
+ αX̂T X̂D̂

(
γQ̂X̂Twn − X̂Twn

)
= αX̂T X̂D̂

(
m̂+ ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))
X̂Twn

We then unroll the above equation by recursively applying X̂Twn till n = 0.

X̂Twn+1 = αX̂T X̂D̂
(
m̂+ ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))
αX̂T X̂D̂

(
m̂+ ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))2
X̂Twn−1

...

=
n−1∑
k=0

(
I − αX̂T X̂D̂

(
I − γQ̂

))k
αX̂T X̂D̂

(
m̂+ ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))n
X̂Tw0 (3.4)

Assuming that as n→∞, (I −αX̂T X̂D̂(I − γQ̂))n → 0, we can drop the second term

and the sequence {X̂Twn} converges to:

lim
n→∞

X̂Twn =
(
I − (I − αX̂T X̂D̂(I − γQ̂))

)−1
(αX̂T X̂D̂(m̂+ ĥ))

= (I − γQ̂)−1D̂−1(X̂T X̂)−1α−1αX̂T X̂D̂(m̂+ ĥ)

= (I − γQ̂)−1(m̂+ ĥ)

lim
n→∞

E
[
xT
i wn

]
=

[
(I − γQ̂)−1(m̂+ ĥ)

]
i
,∀i ∈ N̂

What is left to show now is n→∞, (I − αX̂T X̂D̂(I − γQ̂))n → 0. Following Sutton

(1988), we first show that D̂(I − γQ̂) is positive definite, and then that X̂T X̂D̂(I − γQ̂) has a

full set of eigenvalues all of whose real parts are positive. This enables us to show that α can

be chosen so that eigenvalues of (I − αX̂T X̂D̂(I − γQ̂)) are less than 1 in modulus, which

assures us that its powers converge to 0.

To show that D̂(I − γQ̂) is positive definite, we refer to the Gershgorin Circle theorem
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(Gerschgorin, 1931), which states that if a matrix, A, is real, symmetric, and strictly diagonally

dominant with positive diagonal entries, then A is positive definite. However, we cannot apply

this theorem as is to D̂(I − γQ̂) since the matrix is not necessarily symmetric. To use the

theorem, we first apply another theorem (Theorem A.3 from Sutton (1988)) that states: a

square matrix A is positive definite if and only if A+AT is positive definite. So it suffices to

show that D̂(I − γQ̂) + (D̂(I − γQ̂))T is positive definite.

Consider the matrix S = D̂(I − γQ̂) + (D̂(I − γQ̂))T . We know that S is real

and symmetric. It remains to show that the diagonal entries are positive and that S is

strictly diagonally dominant. First, we look at the diagonal entries, Sii = 2[D̂(I − γQ̂)]ii =

2d̂i(1− γp̂ii) > 0, ∀i ∈ N̂ , which are positive. Second, we have the non-diagonal entries for

i ̸= j as Sij = [D̂(I − γQ̂)]ij + [D̂(I − γQ̂)]ji = −γd̂ip̂ij − γd̂j p̂ji ≤ 0, which are nonpositive.

We want to show that |Sii| ≥
∑

j ̸=i |Sij |, with strict inequality holding for at least one i; we

know that the diagonal elements Sii > 0 and non-diagonal elements Sij ≤ 0, i ̸= j. Hence, to

show that S is strictly diagonally dominant, it is enough to show that Sii > −
∑

j ̸=i Sij , which

means we can simply show that the sum of each entire row is greater than 0, i.e.
∑

j Sij > 0.

Before we show that
∑

j Sij > 0, we note that d̂T = µ̂T (I − Q̂)−1 where µ̂i is the

empirical state distribution of state i. Given the definitions of d̂, µ̂, and Q̂, this fact follows

from Kemeny et al. (1960) and is used by Sutton (1988). Using this fact, we show that∑
j Sij ≥ 0:

∑
j

Sij =
∑
j

(
[D̂(I − γQ̂)]ij + [D̂(I − γQ̂)]Tij

)
= d̂i

∑
j

([I − γQ̂]ij +
∑
j

d̂j [I − γQ̂]Tij)

= d̂i
∑
j

(1− γp̂ij) +
[
d̂T (I − Q̂)

]
i

= d̂i
∑
j

(1− γpij) +
[
µ̂T (I − Q̂)−1(I − Q̂)

]
i

d̂T = µ̂T (I − Q̂)−1

= d̂i(1− γ
∑
j

p̂ij) + µ̂i

≥ 0,
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where the final inequality is strict since µ̂ is positive for at least one element. Given the

above, we have shown that S is real, symmetric, and strictly diagonally dominant; hence, S

is positive definite according to the Gershgorin Circle theorem (Gerschgorin, 1931). Since,

S = D̂(I − γQ̂)+ (D̂(I − γQ̂))T is positive definite, we have D̂(I − γQ̂) to be positive definite.

Now we need to show that X̂T X̂D̂(I − γQ̂) has a full set of eigenvalues, all of whose

real parts are positive. We know that X̂T X̂D̂(I − γQ̂) has a full set of eigenvalues for the

same reason shown by Sutton (1988), i.e. X̂T X̂D̂(I − γQ̂) is a product of three non-singular

matrices, which means X̂T X̂D̂(I − γQ̂) is nonsingular as well; hence, no eigenvalues are 0 i.e.

its set of eigenvalues is full.

Consider λ and y to be an eigevalue and eigenvector pair of X̂T X̂D̂(I − γQ̂). First

lets consider that y may be a complex number and is of the form y = a + bi, and let

z = (X̂T X̂)−1y, y ̸= 0. Second, we consider D̂(I − γQ̂) from earlier i.e. where ∗ is the

conjugate-transpose:

y∗D̂(I − γQ̂)y = z∗X̂T X̂D̂(I − γQ̂)y substituting y∗

= z∗λy X̂T X̂D̂(I − γQ̂)y = λy

= λz∗X̂T X̂z substituting y

= λ(X̂z)∗X̂z

(aT − bT i)(D̂(I − γQ̂))(aT + bT i) = λ(X̂z)∗X̂z substituting y∗ and y

From the above equality, we know that the real parts (Re) of the LHS and RHS are equal as

well i.e.

Re
(
y∗D̂(I − γQ̂)y

)
= Re

(
λ(X̂z)∗X̂z

)
aT D̂(I − γQ̂)a+ bT D̂(I − γQ̂)b = (X̂z)∗X̂zRe (λ)

LHS must be strictly positive since we already proved that D̂(I−γQ̂) is positive definite

and by definition, RHS, (X̂z)∗X̂z, is strictly positive as well. Thus, the Re(λ) must be positive.

Finally, using this result we want to show that the eigenvalues of (I − αX̂T X̂D̂(I − γQ̂)) are
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of modulus less than 1 for a suitable α.

First, we can see that y is also an eigenvector of (I − αX̂T X̂D̂(I − γQ̂)), since

(I − αX̂T X̂D̂(I − γQ̂))y = y − αλy = (1 − λα)y, where λ′ = (1 − αλ) is an eigenvalue of

(I − αX̂T X̂D̂(I − γQ̂)). Second, we want to find suitable α such that the modulus of λ′ is

less than 1. We have the modulus of λ′:

∥λ′∥ = ∥1− αλ∥

=
√
(1− αa)2 + (−αb2) substituting λ = a+ bi of general complex form

=
√
1− 2αa+ α2a2 + α2b2

=
√

1− 2αa+ α2(a2 + b2)

<

√
1− 2αa+ α

2a

(a2 + b2)
(a2 + b2) using α =

2a

(a2 + b2)

=
√
1− 2αa+ 2αa = 1

From above, we can see that if α is chosen such that 0 < α < 2a
a2+b2

, then λ′ will have

modulus less than 1. Then using the theorem that states: if a matrix A has n independent

eigenvectors with eigenvalues λi, then Ak → 0 as k → ∞ if and only if all ∥λi∥ < 1, which

implies that limn→∞

(
I − αX̂D̂(I − Q̂)X̂T

)n
= 0, taking the trailing element in Equation

(3.4) to 0 for a suitable α. We thus prove convergence to the fixed point in Equation (3.1) if a

batch linear TD(0) update is used with an appropriate step size α.

3.3 Convergence to the MDP Certainty Equivalence Estimate

In RL, the transitions of the induced MRP are a function of both the action probabilities

under the behavior policy and the MDP transition dynamics. That is ∀s, s′ ∈ Ŝ:

P̂ (s′|s) =
∑
a∈Â

π̂(a|s)P̂ (s′|s, a) (3.5)

R̄(s) =
∑
a∈Â

π̂(a|s)R̄(s, a), (3.6)
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where R̄(s, a) is the mean reward observed in state s on taking action a. We define a new

certainty-equivalence estimate that separates these two factors. We call this new value function

estimate the Markov decision process certainty equivalent estimate (MDP-CEE).

Definition 2. Markov Decision Process Certainty Equivalence Estimate (MDP-CEE) Value

Function

The MDP-CEE is the value function, v̂π̂MDP, that, ∀sj , sk ∈ Ŝ, satisfies:

v̂π̂MDP(sj) =
∑
a∈Â

π̂(a|sj)

R̄(sj , a) + γ
∑
k∈Ŝ

P̂ (sk|sj , a)v̂π̂MDP(sk)

 . (3.7)

From Definition 2 and Equations (3.5) and (3.6), it is straightforward to verify that

MDP-CEE and MRP-CEE are equivalent.

Note that in Theorem 2, similar to Theorem 1, we show that batch linear TD(0)

converges to an equivalent form of Equation (3.7) in matrix notation (see, Section 2.1.1 for

details on matrix notation):

vπ̂(i) =
[
(I − γQ̂)−1(m̂+ ĥ)

]
i

(3.8)

In Appendix A.1.4, we show that Equation (3.7) and Equation (3.8) are equivalent.

Theorem 2 gives the convergence of batch TD(0) to the MDP-CEE value function:

Theorem 2 (Batch Linear TD(0) Convergence). For any batch whose observation vectors

{x(s)|s ∈ Ŝ} are linearly independent, there exists an ϵ > 0 such that, for all positive α < ϵ

and for any initial weight vector, the predictions for linear TD(0) converge under repeated

presentations of the batch with weight updates after each complete presentation to the fixed-point

(3.8).

Proof. Batch linear TD(0) makes an update to weight vector, wn (of dimension, length of the

feature vector), after each presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1)−wT
nxt

]
xt

where D is the batch of episodes, Lτ is the length of each episode τ , and α is the learning rate.
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We can re-write the whole presentation of the batch of data in terms of the number

of times there was a transition from state i to state j when taking action a in the batch i.e.

ĉaij = d̂iπ̂
a
i p̂

a
ij , where d̂i is the number of times state i ∈ N̂ appears in the batch.

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1 −wT
nxt)

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

ĉaij
[
(r̄aij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂

a
ij

[
(r̄aij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂ip̂
a
ij π̂

a
i (r̄

a
ij + γwT

nxj)xi − α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂

a
ij(w

T
nxi)xi

= wn + α
∑
i∈ ̂̂N

d̂ixi

∑
j∈N̂∪T̂

∑
a∈Âi

p̂aij π̂
a
i (r̄

a
ij + γwT

nxj)− α
∑
i∈N̂

d̂i(w
T
nxi)xi

∑
j∈N̂∪T̂

∑
a∈Âi

π̂a
i p̂

a
ij

= wn + α
∑
i∈N̂

d̂ixi

 ∑
j∈N̂∪T̂

∑
a∈Âi

p̂aij π̂
a
i (r̄

a
ij + γwT

nxj)−wT
nxi

 ∑
j∈N̂∪T̂

∑
a∈Âi

π̂a
i p̂

a
ij = 1

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
i (r̄

a
ij + γwT

nxj)

+

∑
j∈T̂

∑
a∈Âi

p̂aijπ
a
i r̄

a
ij

−wT
nxi

 If xj ∈ T̂ ,wT
nxj = 0

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
i r̄

a
ij

+

γ
∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
i w

T
nxj

+

∑
j∈T̂

∑
a∈Âi

p̂aij π̂
a
i r̄

a
ij

−wT
nxi



wn+1 = wn + αX̂D̂
[
m̂+ γQ̂X̂Twn + ĥ− X̂Twn

]
(3.9)

where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with

columns, xi ∈ Ŝ and D̂ is a diagonal matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i.

Notice that Equation (3.9) is the same as Equation (3.3) since the considered MRP

and MDP settings are equivalent. Due to this similarity, we omit the proof from here below
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as it is identical to the Theorem 1 proof.

The MDP-CEE value function highlights two sources of estimation error in the value

function estimate. Either the observed state transitions occur at a different frequency than

the probability given by P i.e. P ̸= P̂ or the observed actions occur at a different frequency

than their probability under πe i.e. πe ̸= π̂. We describe the former as transition sampling

error and the latter as policy sampling error. Transition sampling error may be unavoidable

in a model-free setting – we do not know P and so we have no choice but to approximate it

with sampling. However, we do know πe and can use this knowledge to potentially correct

policy sampling error. In the next Chapter, we present an algorithm that uses the knowledge

of πe to correct for policy sampling error and obtain a more accurate value function estimate.

3.4 Summary

In this chapter, we proved that batch linear TD(0) converges to two equivalent fixed-points

in the per-step reward and discounted MRP and MDP setting. We then argued that these

fixed-points are inaccurate since they ignore information about the evaluation policy. Finally,

we used this limitation to motivate the focus of Chapter 4, our proposed algorithm that aims

to correct for some of the inaccuracy of the value function learned by batch linear TD(0).
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Chapter 4

Batch Linear Policy Sampling Error

Corrected-TD(0)

In this chapter, we introduce the batch policy sampling error corrected-TD(0) (PSEC-TD(0))

algorithm that corrects for the policy sampling error in batch TD learning. Inspired by

Theorem 2, we take the view that, for a finite batch generated by policy πe, batch TD(0)

evaluates the wrong policy; it evaluates the maximum likelihood policy, π̂ instead of πe. Under

this view, PSEC-TD(0) treats policy sampling error as an off-policy learning problem and

uses importance sampling (Precup et al., 2000a) to correct the weighting of TD(0) updates

from π̂ to πe.

In addition to D and πe, we assume we are given a set of policies, Π. Batch PSEC-TD(0)

first computes the maximum likelihood estimate of the behavior policy:

π̂ := argmax
π′∈Π

∑
τ∈D

Lτ−1∑
t=0

log π′(aτt |sτt ).

This estimation can be done in a number of ways. For example, in the tabular setting we

could use the empirical count of actions in each state. This count-based approach is often

intractable, and hence, in many problems of interest we must rely on function approximation.

When using function approximation, the policy estimate can be obtained by minimizing a

negative log-likelihood loss function.

Once π̂ is computed, the batch PSEC-TD algorithm is the same as Algorithm 1 with
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π̂ replacing πb in the importance sampling ratio. That is, for transition (s, a, r, s′) in D, the

contribution to the weight update is:

wi+1 ← wi + α
[
ρ̂ŷ −wT

i x(s
′)
]
x(s)

where ρ̂ := πe(a|s)
π̂(a|s) , and ŷ = r + γwT

i x(s
′). We will refer to ρ̂ as the PSEC weight. Intuitively,

when action a is observed more frequently than expected in state s, the PSEC-TD(0) new

estimate ŷ is decreased and when it is observed less frequently than expected, ŷ is increased.

4.1 Convergence of Batch Linear PSEC-TD(0)

Chapter 3 defined two equivalent certainty-equivalence estimate definitions and showed that

batch TD(0) converges to them. We now define a new certainty-equivalent estimate to

which our new batch PSEC-TD(0) algorithm converges. Intuitively, the MDP-CEE estimate

(Definition 2) is the exact value function for the maximum likelihood estimate of the behavior

policy, π̂, in the maximum likelihood estimate of the MDP environment; our new algorithm

converges to the exact value function for πe in the maximum likelihood estimate of the MDP

environment. We define this new certainty-equivalent estimate as the PSEC Markov Decision

Process Certainty Equivalence Estimate (PSEC-MDP-CEE) Value Function.

Definition 3. PSEC Markov Decision Process Certainty Equivalence Estimate (PSEC-MDP-

CEE) Value Function

The PSEC-MDP-CEE is the value function, v̂πe
PSEC−MDP, that, ∀sj ∈ Ŝ, satisfies:

v̂πe
PSEC−MDP(sj) =

∑
a∈Â

πe(a|sj)[R̄(sj , a)+

γ
∑
k∈Ŝ

P̂ (sk|sj , a)v̂πe
PSEC−MDP(sk))]

(4.1)

Note that in Theorem 3, we show that batch linear PSEC-TD(0) converges to an

equivalent form of Equation (4.1) in matrix notation (see, Section 2.1.1):

vπ(i) =
[
(I − γÛ)−1(ô+ l̂)

]
i

(4.2)
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In Appendix A.1.5, we show that Equation (4.1) and Equation (4.2) are equivalent.

Theorem 3 states that batch PSEC-TD(0) converges to the PSEC-MDP-CEE value

function (Equation 4.1).

Theorem 3 (Batch Linear PSEC-TD(0) Convergence). For any batch whose observation

vectors {x(s)|s ∈ Ŝ} are linearly independent, there exists an ϵ > 0 such that, for all positive

α < ϵ and for any initial weight vector, the predictions for linear PSEC-TD(0) converge under

repeated presentations of the batch with weight updates after each complete presentation to the

fixed-point (4.1).

Proof. The proof for PSEC-TD(0) follows in large part the structure of the proof for TD(0).

Below we highlight the salient points in the proof.

Batch linear PSEC-TD(0) makes an update to the weight vector, wn (of dimension,

length of the feature vector), after each presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
ρ̂t(r̄t + γwT

nxt+1)−wT
nxt

]
xt

where D is the batch of episodes, Lτ is the length of each episode τ , ρ̂t is the PSEC correction

weight at time t for a given episode τ , and α is the learning rate.

We can re-write the whole presentation of the batch of data in terms of the number

of times there was a transition from state i to state j when taking action a in the batch i.e.

ĉaij = d̂iπ̂
a
i p̂

a
ij , where d̂i is the number of times state i ∈ N̂ appears in the batch.
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wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
ρ̂t(r̄t + γwT

nxt+1)−wT
nxt

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

ĉaij
[
ρ̂ai (r̄

a
ij + γwT

nxj)−wT
nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂

a
ij

[
ρ̂ai (r̄

a
ij + γwT

nxj)−wT
nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂

a
ij

[
πa
i

π̂a
i

(r̄aij + γwT
nxj)−wT

nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂ip̂
a
ijπ

a
i (r̄

a
ij + γwT

nxj)xi − α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂

a
ij(w

T
nxi)xi

= wn + α
∑
i∈ ̂̂N

d̂ixi

∑
j∈N̂∪T̂

∑
a∈Âi

p̂aijπ
a
i (r̄

a
ij + γwT

nxj)− α
∑
i∈N̂

d̂i(w
T
nxi)xi

∑
j∈N̂∪T̂

∑
a∈Âi

π̂a
i p̂

a
ij

= wn + α
∑
i∈N̂

d̂ixi

 ∑
j∈N̂∪T̂

∑
a∈Âi

p̂aijπ
a
i (r̄

a
ij + γwT

nxj)−wT
nxi

 ∑
j∈N̂∪T̂

∑
a∈Âi

π̂a
i p̂

a
ij = 1

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aijπ
a
i (r̄

a
ij + γwT

nxj)

+

∑
j∈T̂

∑
a∈Âi

p̂aijπ
a
i r̄

a
ij

−wT
nxi

 If xj ∈ T̂ ,wT
nxj = 0

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aijπ
a
i r̄

a
ij

+

γ
∑
j∈N̂

∑
a∈Âi

p̂aijπ
a
i w

T
nxj

+

∑
j∈T̂

∑
a∈Âi

p̂aijπ
a
i r̄

a
ij

−wT
nxi


= wn + αX̂D̂

[
ô+ γÛX̂Twn + l̂− X̂Twn

]
where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with

columns, xi ∈ Ŝ and D̂ is a diagonal matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i.

Assuming that as n→∞, (I −αX̂T X̂D̂(I − γÛ))n → 0, we can drop the second term
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and the sequence {X̂Twn} converges to:

lim
n→∞

X̂Twn =
(
I − (I − αX̂T X̂D̂(I − γÛ))

)−1
(αX̂T X̂D̂(ô+ l̂))

= (I − γÛ)−1D̂−1(X̂T X̂)−1α−1αX̂T X̂D̂(ô+ l̂)

= (I − γÛ)−1(ô+ l̂)

lim
n→∞

E
[
xT
i wn

]
=

[
(I − γÛ)−1(ô+ l̂)

]
i
, ∀i ∈ N̂

What is left to show now is that as n → ∞, (I − αX̂T X̂D̂(I − γÛ))n → 0, which

we can show by following the steps shown for Equation (3.4) in Chapter 3. Thus we prove

convergence to the fixed-point (4.1).

4.1.1 Convergence to the MDP True Fixed-Point with Infinite Data

With batch linear PSEC-TD(0) we have corrected for the policy sampling error in batch linear

TD(0). The remaining inaccuracy of the policy sampling corrected certainty-equivalence

fixed-point is due to the transition dynamics sampling error. In a model-free setting, however,

we cannot correct for this error in the same way we corrected the policy sampling error.

We argue that as the batch size approaches infinite, the maximum-likelihood estimate

of the transition dynamics will approach the true transition dynamics i.e. p̂ → p. It then

follows that in expectation, the true value function will be reached. Thus, the batch linear

PSEC-TD(0) with an infinite batch size will correctly converge to the true value function

fixed-point given by Equation (A.7).

4.1.2 Remarks

We remark that convergence has only been shown for the on-policy setting. While PSEC-

TD(0) can be applied in the off-policy setting, it may, like other semi-gradient TD methods,

diverge when off-policy updates are made with function approximation (Baird, 1995). It is

possible that a combination of PSEC-TD(0) and a more recent algorithm such as Emphatic

TD (Mahmood et al., 2015) or Gradient-TD (Sutton et al., 2009) may result in provably

convergent behavior with off-policy updates, however, that study is outside the scope of this
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work. In our empirical analysis, we focus our attention on settings where on- and off-policy

batch linear TD(0) are found to be convergent.

4.2 Extending PSEC to other TD Variants

In general, PSEC can improve any value function learning algorithm that computes the

TD-error, δ, or equivalent errors. As an example, we consider the off-policy least-squares TD

(LSTD) algorithm (Bradtke and Barto, 1996). The off-policy LSTD algorithm (Ghiassian

et al., 2018) analytically computes the exact parameters that minimize the TD-error in a

batch of data using the following steps:

A =
∑

(s,a,s′)∈D

[
ρ̂x(s)(x(s)− γx(s′))T

]
b =

∑
(s,a,s′)∈D

R(s, a, s′)x(s)

w = A−1b,

where ρ̂ is the PSEC weight. Even though we primarily consider TD(0) in this thesis, the

extension to LSTD demonstrates that PSEC-TD can be extended to other value function

learning algorithms.

4.3 Experiments

In this section, we empirically study PSEC-TD. Our experiments are designed to answer the

following questions:

1. Does batch PSEC-TD(0) lower MSVE compared to batch TD(0)?

2. Does batch linear PSEC-TD(0) empirically converge to its certainty-equivalence solution?

3. Does PSEC improve any other TD-based algorithm?

4. What factors does PSEC depend on in the function approximation setting?
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4.3.1 Empirical Setup

We first briefly describe the RL domains used in our experiments. Appendix A.2 includes

additional details.

• Gridworld: In this domain, an agent navigates a 4×4 grid to reach a corner. The state

and action spaces are discrete and we use a tabular representation for v̂πe . PSEC-TD(0)

uses count-based estimation for π̂. The ground truth value function is computed with

dynamic programming and the MSVE computation uniformly weights the error in each

state.

• CartPole: In this domain, a cart agent attempts to balance a pole upright. The

state space is continuous and action space is discrete. In our experiments, a neural

network policy is trained using REINFORCE (Williams, 1992). The network has 2

hidden layers with 16 neurons. We evaluate PSEC with varying linear and non-linear

representations for the value function. The π̂ estimate maps the raw state features to a

softmax distribution over the actions with varying linear and non-linear architectures.

Since the true value function is unknown, we follow Pan et al. (2016) and use Monte

Carlo rollouts from a fixed number of states sampled from episodes following the policy

detailed above to approximate the ground-truth state-values of those states. We then

compute the MSVE between the learned values and the average Monte Carlo return

from these sampled states.

• InvertedPendulum: This domain is similar as CartPole in terms of the objective: to

balance a pole upright. However, the state and action spaces are both continuous. In

our experiments, a neural network policy is trained using Proximal Policy Optimization

(PPO) (Schulman et al., 2017). The network has 2 hidden layers with 64 neurons each.

We evaluate PSEC with varying linear and non-linear representations for the value

function. The π̂ estimate consists of two components: 1) a linear or non-linear mapping

from raw state features to the mean vector of a Gaussian distribution, and 2) parameters

representing the log standard deviation of each element of the output vector. Similar to

above, since the true value function is unknown, we compute Monte Carlo rollouts for

sampled states.
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In all experiments, the value function learning algorithm iterates over the batch of data

until convergence, after which the MSVE of the final value function is computed. All the MSVE

values shown are averaged over a set number of trials with the errors bars showing the 95%

confidence interval. Some experiments include a parameter sweep over the hyperparameters,

which can be found in Appendix A.2.

4.3.2 Tabular Setting: Discrete States and Actions

In these set of experiments, we consider two variants of PSEC-TD that differ in the placement

of the PSEC weight. % For off-policy TD(0), these placements are equivalent in expectation

although the method using the TD-error has been reported to perform better in practice

(Ghiassian et al., 2018). Following these results, our experiments consider two variants of

PSEC-TD:

• PSEC-TD-Estimate: Applies ρ̂ to the new estimate:

ŷ = R+ γwTx(s′).

• PSEC-TD: Applies ρ̂ to the full TD error:

δ = (R+ γwTx(s′))−wTx(s).

For off-policy TD(0), we always use the variant that applies the importance weight to the

TD-error.

Performance of PSEC Variants for Varying Batch Size

Figures 4.1a and 4.1b compare the performance of TD(0) to the two variants of PSEC-TD(0)

that arise from the location of the PSEC weight. For off-policy TD(0) we only consider the

PSEC-TD variant as we found multiplying the new estimate by the weight was divergent.

Figure 4.1 shows that both variants of PSEC-TD(0) lower MSVE compared to batch

TD(0) in both the on- and off-policy settings. All methods show higher variance for the

off-policy setting, however, PSEC-TD(0) variants still provide more accurate value function
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Figure 4.1: Deterministic Gridworld experiments. Both axes are log-scaled, leading to the asymmetric
confidence intervals. Errors are computed over 50 trials with 95% confidence intervals. Figure 4.1a and Figure
4.1b compare the final errors achieved by variants of PSEC-TD(0) and TD(0) for varying batch sizes for on-
and off-policy cases respectively.

estimates. The gap between PSEC-TD(0) and TD(0) increases dramatically with more data;

we discuss this observation in the section below and connect to our earlier convergence results.

Convergence to the PSEC-Certainty-Equivalence
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Figure 4.2: Additional Gridworld experiments. Errors are computed over 50 trials with 95% confidence
intervals. Figure 4.2a shows MSVE achieved by both variants of linear batch PSEC-TD(0), PSEC-TD and
PSEC-TD-Estimate, with respect to the PSEC-MDP-CEE (4.1). Figure 4.2b shows the fraction of unvisited
state-action pairs.
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To address our second empirical question, we empirically verify that both variants of batch

linear PSEC, PSEC-TD and PSEC-TD-Estimate converge to the dynamic programming

computed PSEC-MDP-CEE value function (4.1) in Gridworld. According to Theorem 3,

batch linear PSEC-TD-Estimate converges to the fixed-point (4.1) for all batch sizes. We

also empirically confirm that the other variant of PSEC, PSEC-TD converges to the same

fixed-point (4.1) when the following condition holds true: only when all non-zero probability

actions for each state in the batch have been sampled at least once. We note that when this

condition is false, PSEC-TD-Estimate treats the value of taking that action as 0. For example,

if a state, s, appears in the batch and an action, a, that could take the agent to state s′ does

not appear in the batch, then PSEC-TD-Estimate treats the new estimate R+ γwTx(s′) as 0,

which is also done by the dynamic programming computation (4.1). We note that PSEC-TD

converges to the fixed-point (4.1) only when this condition is true since the PSEC weight

requires a fully supported probability distribution when applied to the current estimate (refer

to Section 4.1). From Figure 4.2a and Figure 4.2b, we can see that this condition is true at

batch size of 11 episodes. We also see from Figure 4.1a and 4.1b that this point is the point

when the benefit of PSEC is fully realized. When this condition is met, PSEC is able to fully

correct all the policy sampling error for state-actions that occurred in the batch.

Effect of Environment Stochasticity
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Figure 4.3: Additional Gridworld experiments. Errors are computed over 50 trials with 95% confidence
intervals. Figure 4.3 is a y-axis log scaled graph that shows the final error (averaged over 100 trials) achieved
by the two variants of PSEC-TD(0) and TD(0) for a given batch size (15 episodes) with varying levels of
determinism of the transition dynamics.
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According to Theorem 2, TD suffers from policy and transition dynamics sampling error. We

study this observation through Figure 4.3, which illustrates how the performance of PSEC

changes with different levels of transition dynamics determinism for a fixed batch size. In

Gridworld, the determinism is varied according to a parameter, p, where the environment

becomes purely deterministic or stochastic as p→ 1 or p→ 0 respectively. From Theorem 3

we expect PSEC to fully correct for the policy sampling error but not transition dynamics

sampling error. Figure 4.3 confirms that PSEC is achieves a lower final MSVE than TD as

p→ 1. As p→ 0, the transition dynamics become the dominant source of sampling error and

PSEC-TD(0) and TD(0) perform similarly.
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Figure 4.4: LSTD Gridworld experiments. Both axes are log-scaled. Errors are computed over 50 trials with
95% confidence intervals. Figure 4.4a and Figure 4.4b compare the final errors achieved by PSEC-LSTD and
LSTD for varying batch sizes for on- and off-policy cases respectively.

We address our third empirical question by applying PSEC to the LSTD algorithm in the

Gridworld domain. Figure 4.4 compares the MSVE of LSTD and PSEC-LSTD and shows

that PSEC-LSTD obtains lower MSVE estimates. The results are similar to those shown

for regular TD(0) and PSEC-TD(0) (Figure 4.1) and suggest that the benefits of correcting

for policy sampling error with PSEC weights can be easily extended to other value function

learning algorithms.
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4.3.3 Function Approximation: Continuous States and Discrete Actions

In this set of experiments, we answer our fourth empirical question on function approximation

in PSEC. In particular, we study how various components of the training process of the PSEC

policy impact the end performance. We conduct our experiments on the CartPole domain.

Our experiments focus on applying only the second variant of PSEC, PSEC-TD, since

we found that PSEC-TD-Estimate diverges. The results shown below are for the on-policy case.

To better understand the intricacies involved, we conduct our experiments on a fixed batch

size and tune various components of the PSEC policy training process to better understand

how they affect end performance. In these experiments, we have three function approximators:

one for the value function; one to estimate the behavior policy, and the pre-learned behavior

policy itself. When we refer to one of these approximators as “fixed”, we mean that its

architecture is unchanged.

In each experiment below, unless stated, the following components were fixed: a batch

size of 10 episodes, the value function was represented with a neural network of single hidden

layer of 512 neurons using tanh activation, the gradients were normalized to unit norm before

the gradient descent step was performed, we used a learning rate of 1.0 and decayed the

learning rate by 10% every 50 presentations of the batch to the algorithm. The true MSVE

was computed by 200 Monte Carlo rollouts for 150 sampled states. In all PSEC training

settings, PSEC performs gradient steps using the full batch of data and uses a separate batch

of data as the validation data, and terminates training according to early stopping. Any

remark on statistical significance is according to Welch’s test (WELCH, 1947) with significance

level of 0.05.
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Effect of Value Function Model Architecture
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Figure 4.5: Comparing performance of PSEC with varying VF model architectures against TD
for fixed batch size of 10 episodes on performance of TD and PSEC-TD. Results shown are
averaged over 300 trials and error bar is 95% confidence. Darker shades represent statistically
significant result. The label on the x axis shown is (# hidden layers - # neurons). The value
function represented by 0-0 is a linear mapping with no activation function.

Figure 4.5 illustrates the impact of different value function classes on the performance of TD

and PSEC, while holding the PSEC model and behavior policy architectures fixed. PSEC

used a model architecture of 3 hidden layers with 16 neurons each and tanh activation, and

learning rate of 0.025.

We generally found that a more expressive value function representation corresponded

to better overall MSVE performance in both algorithms. Interestingly, however, the neural

network with one hidden layer and 128 neurons performed worse than the linear representation,

and PSEC’s improvement over TD with this value function representation was not statistically

significant. We also found that the gap between PSEC and TD improved as the value function

representation became richer. We believe that even though PSEC finds a more accurate

fixed point than TD in the space of all value functions, the shown difference between the

two algorithms is dependent on the space of representable value functions according to the

value function representation – a more representable function class can capture the difference

between the two algorithms better.
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Effect of PSEC Learning Rate
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Figure 4.6: Comparing performance of PSEC with varying learning rates against TD for a
fixed batch size of 10 episodes. Results shown are averaged over 300 trials and error bar is
95% confidence.

Figure 4.6 compares the performance of PSEC-TD vs TD for varying learning rates of the

PSEC policy for a fixed batch size of 10 episodes, while holding the value function, PSEC

model, and behavior policy architectures fixed. The PSEC policy used in this experiment was

a neural network with: 3 hidden layers with 16 neurons each and tanh activation. Since TD

does not use PSEC, its error for a given batch size is independent of the PSEC learning rate.

From above, PSEC appears to be relatively stable in its improvement over TD regardless of

the learning rate used.
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Effect of PSEC Model Architecture
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Figure 4.7: Comparing performance of PSEC with varying model architectures against TD
for a fixed batch size of 10 episodes. Results shown are averaged over 300 trials and error bar
is 95% confidence. Darker shades represent statistically significant result. The label on the x
axis shown is (# hidden layers - # neurons). The value function represented by 0-0 is a linear
mapping with no activation function.

Figure 4.7 compares the performance of PSEC against TD with varying PSEC neural network

model architectures, while the value function and behavior policy architectures are fixed.

PSEC used a learning rate of 0.025.

The chosen PSEC neural network models are with respect to the behavior policy

described earlier, a 2 hidden layered with 16 neurons architecture. In general, we found that

more expressive network models produced better PSEC corrections since they were able to

better capture the maximum likelihood estimate of the policy from the data. Unlike the

neural network PSEC policies, the linear function PSEC policy did not produce a statistically

significant improvement over TD.
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Varying PSEC Training Style
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Figure 4.8: Comparing performance of varying training styles of PSEC against TD for a fixed
batch size of 10 episodes. Results shown are averaged over 300 trials and shaded region is
95% confidence. Darker shades represent statistically significant result.

Figure 4.8 illustrates the performance of three variants of PSEC, while holding the value-

function PSEC model, and behavior policy architectures fixed. All three variants use the

same PSEC model architecture as that of the behavior policy, and each used a learning rate

of 0.025 with tanh activation. The three variants are as follows: 1) Lin-FT is when PSEC

initializes the PSEC model to the weights of the behavior policy and trains on the batch of

data by finetuning only the last linear layer, 2) NN-FT is when PSEC initializes the PSEC

model to the weights of the behavior policy but finetunes the all the weights of the network,

and 3) PSEC uses the same training style in the previous experiments, where the model is

initialized randomly and all the weights are tuned. We found that Lin-FT performed similarly

to TD with a statistically insignificant improvement over TD; we believe this may be so since

Lin-FT is initialized to the behavior policy and since there are only few weights to change in

the linear layer, the newly learned Lin-FT is still similar to the behavior policy, which would

produce PSEC corrections close to 1 (equivalent to TD). Interestingly, tuning all the weights

of the neural network did better when the model was initialized randomly versus when it was
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initialized to the behavior policy.

Effect of Underfitting and Overfitting during PSEC Policy Training
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Figure 4.9: Comparing MSVE achieved and cross entropy loss by variants of PSEC after each
epoch of training for a fixed batch size of 10 episodes. Results shown are averaged over 50
trials and shaded region is 95% confidence.

This experiment attempts to give an understanding of how the MSVE achieved by each PSEC

variant is dependent on the number of epochs the PSEC model was trained for, while holding

the value-function, PSEC and behavior policy architectures fixed. We conduct the experiment

as follows: the PSEC algorithm performs 10 gradient descent steps (epochs) on the full batch

of data, after which the resulting training and validation mean cross-entropy losses are plotted

along with the MSVE achieved by that trained PSEC policy. For example, after 10 epochs,

the training and validation loss of the PSEC model was nearly 0.5 and the model achieved an

MSVE of nearly 150.

Since computing the MSVE can be computationally expensive, as it requires processing

the batch until the value function converges, we change the learning rate decay schedule to

starting with a learning rate of 1.0 but decaying learning rate by 50% every 50 presentations

of the full batch to the algorithm (this change is also the reason why these results may be

different from the ones shown earlier). All PSEC variants used a learning rate of 0.025 and

PSEC model architecture of 2 hidden layers with 16 neurons each and tanh activation.
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Figure 4.9 suggests that performance of PSEC, regardless of the variant, depends on

the number of epochs it was trained for. Naturally, we do want to fit sufficiently well to

the data, and the graph suggests that some overfitting is tolerable. However, if overfitting

becomes extreme, PSEC’s performance suffers, resulting in MSVE nearly 1000 times larger

than the minimum error achieved (not shown for clarity). From the graph, we can see that the

PSEC variant, which is initialized randomly, starts to extremely overfit before the NN-finetune

variant does, causing its MSVE to degrade before that of NN-finetune variant. We also see

that the Lin-finetune variant is not able to overfit since the last linear layer may not be

expressible enough to overfit, causing it to have a relatively stable MSVE across all epochs.

Effect of Behavior Policy Distribution
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Figure 4.10: Comparing performance of PSEC against TD for a fixed batch size of 100 episodes
when the behavior policy models a discontinuous function. Results shown are averaged over
30 trials and shaded region is 95% confidence.

So far, PSEC has used a function approximator of the similar function class as that of the

behavior policy i.e. both the PSEC models and the behavior policy were neural networks of

similar architectures. In this experiment, we evaluate the performance of PSEC with a neural

network policy when the behavior policy that models a discontinuous function generates a

larger batch size of 100 episodes, while the value function and PSEC model architectures are
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fixed. In particular, we use a behavior policy in CartPole that does the following: if the sign

of the pole angle is negative, move left with probability 0.75 and right with probability 0.25,

and if the sign of the pole angle is positive, move right with probability 0.75 and left with

probability 0.25. The PSEC policy is a neural network with 3 hidden layers with 16 neurons

each with tanh activation.

Figure 4.10 shows that PSEC performs much worse than TD when the behavior policy

is the discontinuous type function described above. We reason that the neural network finds

it difficult to compute the MLE of the data since this discontinuous distribution is “hard” to

model; therefore, producing incorrect PSEC weights, which degrade its performance. While

we can largely ignore the distribution of the behavior policy, this experiment shows that PSEC

may suffer in situations like the one described.

4.3.4 Function Approximation: Continuous States and Actions

This set of experiments also answers the fourth empirical question on function approximation in

PSEC, and as done above, studies how various components of the training process of the PSEC

policy impact the end performance. We conduct our experiments on the InvertedPendulum

domain.

Our experiments focus on applying only the second variant of PSEC, PSEC-TD, since

we found that PSEC-TD-Estimate diverges. Unlike in Section 4.3.3, we do not evaluate the

performance of the finetuning variants of PSEC-TD since they performed worse on preliminary

tests than regular PSEC-TD, which initializes the PSEC model randomly. The results shown

below are for the on-policy case. To better understand the intricacies involved, we conduct our

experiments on a fixed batch size and tune various components of the PSEC policy training

process to better understand how they affect end performance. In these experiments, we have

three function approximators: one for the value function; one to estimate the behavior policy,

and the pre-learned behavior policy itself. When we refer to one of these approximators as

“fixed”, we mean that its architecture is unchanged.

In each experiment below, unless stated, the following components were fixed: a batch

size of 20 episodes, the value function was represented with a neural network of 2 hidden

layer with 64 neurons each using tanh activation, the gradients were normalized to unit norm

39



before the gradient descent step was performed, we used a learning rate of 1.0 and decayed the

learning rate by 5% every 10 presentations of the batch to the algorithm. The true MSVE was

computed by 100 Monte Carlo rollouts for 100 sampled states. In all PSEC training settings,

PSEC performs gradient steps using the full batch of data and uses a separate batch of data

as the validation data, and terminates training according to early stopping. Any remark on

statistical significance is according to Welch’s test (WELCH, 1947) with significance level of

0.05.

Effect of Value Function Model Architecture
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Figure 4.11: Comparing performance of PSEC with varying VF model architectures against
TD for fixed batch size of 20 episodes on performance of TD and PSEC-TD. Results shown are
averaged over 350 trials and error bar is 95% confidence. Darker shades represent statistically
significant result. The label on the x axis shown is (# hidden layers - # neurons). The value
function represented by 0-0 is a linear mapping with no activation function.

Figure 4.11 compares the performance of PSEC-TD and TD for different value function

representations, while holding the PSEC estimation policy and behavior policy architectures

fixed. The PSEC policy is 2 hidden layers with 64 neurons each and used a learning rate

of 0.000781. Similar to the earlier findings, a more expressive value function captured the

difference between PSEC and TD much better. For less expressive value functions, we found

that both methods performed poorly, and any difference between the two was not statistically

significant. Note that the linear architecture used produced an MSVE of ∼ 5800 in both
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algorithms (not shown for clarity) and the difference was statistically insignificant.

Effect of PSEC Learning Rate
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Figure 4.12: Comparing performance of PSEC with varying learning rates against TD for a
fixed batch size of 20 episodes. Results shown are averaged over 200 trials and error bar is
95% confidence.

Figure 4.12 compares the performance of PSEC-TD to TD with varying learning rates for

PSEC, while holding the PSEC and value function architecture fixed. Unlike earlier, the PSEC

learning rate heavily influences the learned value function in the continuous state and action

setting. In general, PSEC performance heavily degraded when the learning rate increased

(y-axis limited for clarity). Among the tested learning rates, 0.000781 was the optimal, giving

a statistically significant result.
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Effect of PSEC Model Architecture
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Figure 4.13: Comparing performance of PSEC with varying model architectures against TD
for a fixed batch size of 20 episodes. Results shown are averaged over 200 trials and error bar
is 95% confidence. Darker shades represent statistically significant result. The label on the x
axis shown is (# hidden layers - # neurons). The value function represented by 0-0 is a linear
mapping with no activation function.

Figure 4.13 compares the performance of PSEC-TD with TD with varying PSEC model

architectures, while holding the value-function and behavior policy architectures fixed. All

the shown PSEC architectures used a learning rate of learning rate 0.000781. Similar to

our earlier findings, a more expressive network was able to better model the batch of data

and produce a statistically significant improvement over TD. Less expressive PSEC models

performed worse than TD, and any improvement was statistically insignificant. Note that the

linear architecture used produced an MSVE of ∼ 5800 (not shown for clarity) and its poor

performance with respect to TD(0) was statistically significant.
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Effect of Underfitting and Overfitting during PSEC Policy Training
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Figure 4.14: Comparing MSVE achieved and loss by PSEC after each epoch of training for a
fixed batch size of 20 episodes. Results shown are averaged over 100 trials and shaded region
is 95% confidence.

The motivation behind this experiment is the same as the one presented in the continuous state

and discrete action case, i.e. understanding how the MSVE achieved by PSEC is dependent

on the number of epochs the PSEC model was trained for, while holding the value-function,

PSEC and behavior policy architectures fixed. The experiment is conducted in a similar

manner as before except we perform 50 gradient descent steps (epochs) before plotting the

training and validation loss, and MSVE achieved by PSEC after the gradient steps. The loss

shown here is a regression loss detailed in Appendix A.2.3.

When computing MSVE, we used the learning rate schedule specified at the beginning

of this section. PSEC used a learning rate of 0.000781 and model architecture of 2 hidden

layers with 64 neurons each and tanh activation.

Figure 4.14 suggests the similar ideas that we discovered from Figure 4.9, i.e. some

overfitting to the data is tolerable, perhaps even desirable, but extreme overfitting leads to

poor performance. If some overfitting is desirable, then early stopping is not the preferred

principled approach to terminate PSEC model training.
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4.4 Summary

In this chapter, we gave a theoretical analysis of the more accurate fixed point that PSEC-TD

converges to, PSEC-MDP-CEE. We then laid out and answered several empirical questions

to better understand PSEC and its benefits. In general, we showed that PSEC brings

immediate benefit to the tabular setting and that PSEC shows large potential in the function

approximation setting, given favorable training settings. Automatically finding these settings

in a principled manner in the function approximation case is an important future direction.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In batch value function approximation, we observed that TD(0) may converge to an inaccurate

estimate of the value function due to policy sampling error. We proposed PSEC-TD(0) as a

method to correct this error and show that it leads to a more desirable fixed point as compared

to TD(0). In this thesis, we theoretically analyzed PSEC-TD and empirically evaluated it in

the tabular and function approximation settings. Our empirical study validated that PSEC

converged to a more accurate fixed point than TD, and studied how the numerous components

in the PSEC training setup impact its performance with respect to TD.

5.2 Limitations of PSEC

Despite the performance benefits that batch PSEC-TD(0) introduced, there are limitations.

First, it requires knowledge of the evaluation policy, which on-policy TD(0) does not. This

comparative disadvantage is only for the on-policy setting as both TD(0) and PSEC-TD(0)

require knowledge of the evaluation policy for the off-policy setting. Additionally, PSEC-

TD(0), in the off-policy case, has the advantage of not requiring knowledge of the behavior

policy πb. Second, if either of the finetuning variants of PSEC were used, it would require

knowing the paramaters of the policy that generated the data. Third, the policy estimation

step required by PSEC-TD(0) could potentially be computationally expensive. For instance,

requiring the computation and storage of O(|S||A|) parameters in the tabular setting.
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5.3 Future Work

There are many directions for future work given the fundamental nature of the TD(0) algorithm.

First, our theoretical and experimental work focused on improving the performance of batch

TD(0). We expect that a variant of PSEC can improve value function learning with n-step TD

and TD(λ) though we have not yet studied this line of work. Second, it remains to be seen how

the PSEC weight could be applied to online value function learning. Third, with an improved

value function learning algorithm, it would be interesting to see if an agent can learn better

control policies. Fourth, it would be interesting to theoretically and empirically study PSEC

when learning the state-action values. Finally, as mentioned in Chapter 4, automatically

finding the optimal training setting for PSEC in the function approximation setting is another

important direction for future work.

46



Appendix A

Supplemental Material

In this appendix, we include additional details to aid in the theoretical analysis in Chapters 3

and 4, and elaborate on the experimental details from Chapter 4. The notations used in this

section are included in Chpater 2.

A.1 Fixed-point for an MDP in the Per-step Reward and

Discounted Case

In this section, we establish several fixed-points that we expect the value function to converge

to in the discounted per-step reward case for an MRP and MDP. Note that Sutton (1988)

derived these fixed-points for MRPs when rewards are only received on termination and there

is no discounting. We first specify the fixed-points for an MRP in the discounted per-step

reward case, and then extend this result for MDPs.

For both an MRP and MDP, we establish two types of fixed-points in the per-step

reward and discounted case. The first fixed-point is the true fixed-point in that it is the value

function computed assuming that we have access to the true policy and transition dynamics

distributions. Ideally, we would like our value function learning algorithms to converge to this

fixed-point. The second fixed-point is the certainty-equivalence estimate fixed-point, which

is the value function computed using the maximum-likelihood estimates of the policy and

transition dynamics from a batch of fixed data. We note that due to sampling error in the

policy and transition dynamics, the certainty-equivalence estimate is an inaccurate estimate
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of the true value function. Finally, and only for MDPs, we specify the fixed-point that we

expect the value function to learn after applying PSEC.

A.1.1 MRP True Fixed-Point

The true value function v for a state, i ∈ N , induced by the policy-integrated transition

dynamics pπ, reward function r, and policy, π, is given by:

v(i) =
∑

j∈N∪T
pπij [rij + γv(j)] Bellman equation

=
∑
j∈N

pπij [rij + γv(j)] +
∑
j∈T

pπijrij expected return from T , v(T ) = 0

=
∑
j∈T

pπijrij +
∑
j∈N

pπij

[
rij + γ

[ ∑
k∈N∪T

pπjk [rjk + γv(k)]

]]
recursively apply v(i)

v(i) =
∑
j∈T

pπijrij +
∑
j∈N

pπijrij + γ
∑
j∈N

pπij
∑

k∈N∪T
pπjkrjk

+ γ2
∑
j∈N

pπij
∑

k∈N∪T
pπjkv(k)

=
∑
j∈T

pπijrij +
∑
j∈N

pπijrij

+ γ
∑
j∈N

pπij
∑
k∈N

pπjkrjk + γ
∑
j∈N

pπij
∑
k∈T

pπjkrjk

+ γ2
∑
j∈N

pπij
∑
k∈N

pπjkv(k) splitting N and T

We define vectors, h and m with, [h]i =
∑

j∈T pπijrij , [m]i =
∑

j∈N pπijrij , and Q is

the true transition matrix of the Markov reward process induced by π and P , i.e., [Q]ij = pπij .
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Then continuing from above, we have

v(i) = [h]i + [m]i + γQ[h]i + γQ[m]i + γ2Q2[h]i + γ2Q2[m]i + . . . unrolling v(N ∪ T )

(A.1)

=

[ ∞∑
k=0

(γQ)k(m+ h)

]
i

(A.2)

v(i) =
[
(I − γQ)−1(m+ h)

]
i

(A.3)

The existence of the limit and inverse are assured by Theorem A.1 in Sutton (1988).

The theorem is applicable here since limk→∞(γQ)k = 0.

A.1.2 MRP Certainty-Equivalence Fixed -Point

For the certainty-equivalence fixed-point, we consider a batch of data, D. We follow the

same steps and similar notation from Equation (A.3), with the slight modification that the

maximum-likelihood estimate (MLE) of the above quantities according to D, is given with a

hat (ˆ) on top of the quantity. The observed sets of non-terminal and terminal states in the

batch are given by N̂ and T̂ respectively.

Then similar to above, we can derive the certainty-equivalence estimate of the value

function according to the MLE of the MRP transition dynamics from the batch for a particular

state, i∀N̂ is:

v̂(i) =
[
(I − γQ̂)−1(m̂+ ĥ)

]
i

(A.4)

A.1.3 MDP True Fixed-Point

The true value function, vπ, for a policy, π, for a state, i∀N , induced by the transition

dynamics and reward function, p and r is given by:
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vπ(i) =
∑
a∈A

πa
i

∑
j∈N∪T

paij
[
raij + γvπ(j)

]
Bellman equation

=
∑
a∈A

πa
i

∑
j∈N

paij
[
raij + γvπ(j)

]
+

∑
a∈A

πa
i

∑
j∈T

paijr
a
ij expected return from T , vπ(T ) = 0

vπ(i) =
∑
a∈A

πa
i

∑
j∈T

paijr
a
ij +

∑
a∈A

πa
i

∑
j∈N

paij

[
raij + γ

[∑
a′∈A

πa′
j

∑
k∈N∪T

pa
′

jk

[
ra

′
jk + γvπ(k)

]]]

=
∑
j∈T

∑
a∈A

πa
i p

a
ijr

a
ij +

∑
j∈N

∑
a∈A

πa
i p

a
ijr

a
ij + γ

∑
j∈N

∑
a∈A

πa
i p

a
ij

∑
k∈N∪T

∑
a′∈A

πa′
j pa

′
jkr

a′
jk

+ γ2
∑
j∈N

∑
a∈A

πa
i p

a
ij

∑
k∈N∪T

∑
a′∈A

πa′
j pa

′
jkv

π(k)

=
∑
j∈T

∑
a∈A

πa
i p

a
ijr

a
ij +

∑
j∈N

∑
a∈A

πa
i p

a
ijr

a
ij

+ γ
∑
j∈N

∑
a∈A

πa
i p

a
ij

∑
k∈N

∑
a′∈A

πa′
j pa

′
jkr

a′
jk + γ

∑
j∈N

∑
a∈A

πa
i p

a
ij

∑
k∈T

∑
a′∈A

πa′
j pa

′
jkr

a′
jk

+ γ2
∑
j∈N

∑
a∈A

πa
i p

a
ij

∑
k∈N

∑
a′∈A

πa′
j pa

′
jkv

π(k) splitting N and T

Similar to earlier, we have vectors, h and m with, [h]i =
∑

j∈T
∑

a∈A πa
i p

a
ijr

a
ij , [m]i =∑

j∈N
∑

a∈A πa
i p

a
ijr

a
ij , andQ is the true transition matrix of the Markov reward process induced

by π and P , i.e., [Q]ij =
∑

a π
a
i p

a
ij . The terms are not overloaded since the expectation over

the true policy yields the same values. Then continuing from above, we have

vπ(i) = [h]i + [m]i + γQ[h]i + γQ[m]i + γ2Q2[h]i + γ2Q2[m]i + . . . unrolling vπ(N ∪ T )

(A.5)

=

[ ∞∑
k=0

(γQ)k(m+ h)

]
i

(A.6)

vπ(i) =
[
(I − γQ)−1(m+ h)

]
i

(A.7)

The existence of the limit and inverse are assured by Theorem A.1 in Sutton (1988).
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The theorem is applicable here since limk→∞(γQ)k = 0.

A.1.4 MDP Certainty-Equivalence Fixed-Point

Similar to the above subsection, for certainty-equivalence fixed-point, we consider a batch

of data, D, with the maximum-likelihood estimate (MLE) of the above quantities according

to D given with a hat (ˆ) on top of the quantity. The observed sets of non-terminal and

terminal states in the batch are given by N̂ and T̂ respectively.

Then similar to above, we can derive the certainty-equivalence estimate of the value

function according to the MLE of the policy and transition dynamics from the batch for a

particular state, i∀ ˆ̂N is:

vπ̂(i) =
[
(I − γQ̂)−1(m̂+ ĥ)

]
i

(A.8)

This fixed-point is called the certainty-equivalence estimate (CEE) (Sutton, 1988) for

an MDP. We note that MLE of the policy and transition dynamics according to the batch may

not be representative of the true policy and transition dynamics. In that case, MDP-CEE

(Equation (A.8)) is inaccurate with respect to Equation (A.7) due to policy and transition

dynamics sampling error.

A.1.5 Policy Sampling Error Corrected MDP Certainty-Equivalence Fixed-

Point

We now derive a new fixed-point, the policy sampling error corrected MDP certainty-equivalence

fixed-point. This fixed-point corrects the policy sampling error that occurs in the value function

given by Equation (A.8), making the estimation more accurate with respect to the true value

function given by Equation (A.7).

We introduce the PSEC weight, ρ̂ai =
πa
i

π̂a
i
, with π being the policy that we are interested

in evaluating and π̂ being the MLE of the policy according to batch D. ρ̂ is then applied

to the above quantities to introduce a slightly modified notation. In particular, ρ̂ applied

to Q̂ results in [Û ]ij =
∑

a∈Âi
ρ̂ai π̂

a
i p̂

a
ij , and applied to vectors ĥ and m̂ results in [̂l]i =∑

j∈T
∑

a∈Âi
ρ̂ai π̂

a
i p̂

a
ij r̂

a
ij and [ô]i =

∑
j∈N

∑
a∈Âi

ρ̂ai π̂
a
i p̂

a
ij r̂

a
ij respectively. After simplification,

we have [Û ]ij =
∑

a∈Âi
πa
i p̂

a
ij , [̂l]i =

∑
j∈T

∑
a∈Âi

πa
i p̂

a
ij r̂

a
ij , and [ô]i =

∑
j∈N

∑
a∈Âi

πa
i p̂

a
ij r̂

a
ij .
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Using these policy sampling error corrected quantities, we can derive the fixed-point for true

policy, π, in a similar manner as earlier:

vπ(i) =
[
(I − γÛ)−1(ô+ l̂)

]
i

(A.9)

In computing this new fixed-point, we have corrected for the policy sampling error,

resulting in a more accurate estimation of Equation (A.7) than Equation (A.8). Now, the

value function is computed for the true policy that we are interested in evaluating, π.

A.2 Extended Empirical Description

In this appendix we provide additional details for our empirical evaluation.

A.2.1 Gridworld

Figure A.1: The Gridworld environment. Start at top left, bottom right is terminal state,
discrete action space consists of the cardinal directions, and discrete state space is the location
in the grid. This specific image was taken from this link.

This domain is a 4× 4 grid, where an agent starts at (0, 0) and tries to navigate to

(3, 3). The states are the discrete positions in the grid and actions are the 4 cardinal directions.

The reward function is 100 for reaching (3, 3), −10 for reaching (1, 1), 1 for reaching (1, 3),

and −1 for reaching all other states. If an agent takes an action that hits a wall, the agent

stays in the same location. The transition dynamics are controlled by a parameter, p, where

with probability p, an agent takes the intended action, else it takes an adjacent action with
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probability (1− p)/2. All policies use a softmax action selection distribution with value θsa,

for each state, s, and action a. The probability of taking action a in state s is given by:

π(a|s) = eθsa∑
a′∈A eθsa′

In the on-policy experiments, the evaluation and behavior policies were equiprobable

policies in each cardinal direction. In the off-policy experiments, the evaluation policy was

such that each θ was generated from a standard normal distribution and behavior policy was

the equiprobable policy.

For the comparisons of batch linear PSEC-TD(0) and TD(0), we conducted a pa-

rameter sweep of the learning rates for the varying batch sizes. The parameter sweep

was over: {5e−3, 1e−3, 5e−2, 1e−2, 5e−1}. We used a value function convergence threshold

of 1e−10. For PSEC-LSTD and LSTD, we stabilized the matrix, A, before inverting it

by adding ϵI to the computed A. We conducted a parameter sweep over the following:

ϵ ∈ {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1}.

A.2.2 CartPole

Figure A.2: CartPole-v0 from OpenAI Gym (Brockman et al., 2016)

In this domain, the goal of the agent is to balance a pole for as long as possible. We trained

our behavior policy using REINFORCE (Williams, 1992) with the Adam optimizer (Kingma

and Ba, 2014) with learning rate 3e−4, β1 = 0.9, and β2 = 0.999. The behavior policy mapped

raw state features to a softmax distribution over actions. The policy was a neural network
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with 2 hidden layers with 16 neurons each, and used the tanh activation function and was

initialized with Xavier initialization (Glorot and Bengio, 2010).

The value function used by all algorithms was initialized by Xavier initialization and

used the tanh activation function, and was trained using semi-gradient TD (Sutton and Barto,

2018). We used a convergence threshold of 0.1.

The PSEC policy was initialized by Xavier initialization and used the tanh activa-

tion function. PSEC-TD sweeped over the following learning rates α ∈ {0.1 × 2.0j |j =

−7,−6, ...1, 2}. It used a validation set of 10% the size of the batch size. It used an L2

regularization of 2e−2. More details can be found in Chapter 4.

A.2.3 InvertedPendulum

Figure A.3: InvertedPendulum-v2 from OpenAI Gym and MuJoCo (Brockman et al., 2016;
Todorov et al., 2012)

In this domain, the goal of the agent is to balance a pole for as long as possible. We

trained our behavior policy using PPO (Schulman et al., 2017) with the default settings found

on Gym (Brockman et al., 2016). The policy was a neural network with 2 hidden layers

with 64 neurons each, and used the tanh activation function and was initialized with Xavier

initialization (Glorot and Bengio, 2010). It mapped state features to an output vector that

represented the mean vector of a Gaussian distribution. This mapping along with a separate

parameter set representing the log standard deviation of each element in the output vector,
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make up the policy. The policy was trained by minimizing the following loss function:

L =

m∑
i=1

0.5((ai − µ(si))/e
σ)2 + σ

where m are the number of state-action training examples, ai is the action vector of

the ith example, µ(si) is the mean vector outputted by the neural network of the Gaussian

distribution for state si, and σ is the the seperate parameter representing the log standard

deviation of each element in the output vector, µ(si).

The value function used by all algorithms was initialized by Xavier initialization and

used the tanh activation function, and was trained using semi-gradient TD (Sutton and Barto,

2018). We used a convergence threshold of 0.1.

The PSEC policy was initialized by Xavier initialization and used the tanh activa-

tion function. PSEC-TD sweeped over the following learning rates α ∈ {0.1 × 2.0j |j =

−8,−6, ..., 1, 2}. It used a validation set of 20% the size of the batch size. More details can

be found in Chapter 4.
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