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Abstract
Temporal difference (TD) learning is one of the
main foundations of modern reinforcement learn-
ing. This paper studies the use of TD(0), a canon-
ical TD algorithm, to estimate the value function
of a given policy from a batch of data. In this
batch setting, we show that TD(0) may converge
to an inaccurate value function because the up-
date following an action is weighted according to
the number of times that action occurred in the
batch – not the true probability of the action under
the given policy. To address this limitation, we
introduce policy sampling error corrected-TD(0)
(PSEC-TD(0)). PSEC-TD(0) first estimates the
empirical distribution of actions in each state in
the batch and then uses importance sampling to
correct for the mismatch between the empirical
weighting and the correct weighting for updates
following each action. We refine the concept of
a certainty-equivalence estimate and argue that
PSEC-TD(0) is a more data efficient estimator
than TD(0) for a fixed batch of data. Finally, we
conduct an empirical evaluation of PSEC-TD(0)
on three batch value function learning tasks, with
a hyperparameter sensitivity analysis, and show
that PSEC-TD(0) produces value function esti-
mates with lower mean squared error than TD(0).

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) algo-
rithms have been applied to a variety of sequential-decision
making problems such as robot manipulation (Kober et al.,
2013; Gu et al., 2016) and autonomous driving (Sallab et al.,
2017). Many RL algorithms learn an optimal control policy
by estimating the value function, a function that gives the
expected return from each state when following a particular
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policy (Puterman & Shin, 1978; Bertsekas, 1987; Konda &
Tsitsiklis, 2000). These algorithms require accurate value
function estimation with finite data. A fundamental ap-
proach to value function learning is the temporal difference
(TD) algorithm (Sutton, 1988).

In this work, we focus on improving the accuracy of the
value function learned by batch TD, where TD updates for
a value function are computed from a fixed batch of data.
We show that batch TD(0) may converge to an inaccurate
value function since it ignores the known action probabili-
ties of the policy it is evaluating. For example, consider a
single state in which the evaluation policy selects between
action a1 or a2 with probability 0.5. If, in the finite batch
of observed data, a1 actually happens to occur twice as of-
ten as a2 then TD updates following a1 will receive twice
as much weight as updates following a2, even though in
expectation they should receive the same weight. We de-
scribe this finite-sample error in the value function estimate
as policy sampling error. To correct for policy sampling
error we propose to first estimate the maximum likelihood
policy from the observed data and then use importance sam-
pling (Precup et al., 2000a) to account for the mismatch
between the frequency of sampled actions and their true
probability under the evaluation policy. Variants of this tech-
nique have been successful in multi-armed bandits (Li et al.,
2015; Narita et al., 2018; Xie et al., 2018), policy evaluation
(Hanna et al., 2019), and policy gradient learning (Hanna
& Stone, 2019). However, we are the first to show that this
technique can be used to correct for policy sampling error in
value function estimation and the first to show the benefit of
importance sampling in on-policy value function estimation.
We show that by using the available policy information, our
approach is more data efficient than vanilla batch TD(0).
We call our new value function learning algorithm batch
policy sampling error corrected-TD(0) (PSEC-TD(0)).

The contributions of the paper are the following:

1. Show that the fixed point that batch TD(0) converges
to for a given policy is inaccurate with respect to the
true value function.

2. Introduce the batch PSEC-TD(0) algorithm that re-
duces the policy sampling error in batch TD(0).

3. Refine the concept of a certainty-equivalence estimate



Reducing Sampling Error in Batch Temporal Difference Learning

for TD(0) (Sutton, 1988) and provide theoretical justi-
fication that batch PSEC-TD(0) is more data efficient
than batch TD(0).

4. Empirically analyze batch PSEC-TD(0) in the tabular
and function approximation setting.

2. Background
This section introduces notation and formally specifies the
batch value function learning problem.

2.1. Notation and Definitions

Following the standard MDPNv1 notation (Thomas, 2015),
we consider a Markov decision process (MDP) with state
space S, action space A, reward function R, transition dy-
namics function P , and discount factor γ (Puterman, 2014).
In any state s, an agent selects stochastic actions according
to a policy π, a ∼ π(·|s). After taking an action a in state
s the agent transitions to a new state s′ ∼ P (·|s, a) and re-
ceives reward R(s, a, s′). We assume S and A to be finite;
however, our experiments also consider infinite sized S and
A. We consider the episodic, discounted, and finite horizon
setting. The policy and MDP jointly induce a Markov re-
ward process (MRP), in which the agent transitions between
states s and s′ with probability P (s′|s) and receives reward
R(s, s′). Finally, x(s) : S → Rd gives a column feature
vector for each state s ∈ S.

We are concerned with computing the value function, vπ :
S → R, that gives the value of any state. The value of a
particular state is the expected discounted return, i.e. the
expected sum of discounted rewards when following policy
π from that state:

vπ(s) := Eπ

[ L∑
k=0

γkRt+k+1

∣∣∣∣ st = s

]
, ∀s ∈ S (1)

where L is the terminal time-step and the expectation is
taken over the distribution of future states, actions, and
rewards under π and P .

2.2. Batch Value Prediction

This work investigates the problem of approximating vπe
given a batch of data, D, and an evaluation policy, πe. Let
a single episode, τ , be defined as τ := (s0, a0, r0, s1, ...,
sLτ−1 , aLτ−1 , rLτ−1), where Lτ is the length of the episode
τ . The batch of data consists of m episodes, i.e., D :=
{τi}m−1i=0 . The policy that generated the batch of data is
called the behavior policy, πb. If πb is the same as πe
for all episodes then learning is said to be done on-policy;
otherwise it is off-policy.

In batch value prediction, a value function learning algo-
rithm uses a fixed batch of data to learn an estimate v̂πe
that approximates the true value function, vπe . In this work,

we introduce algorithmic and theoretical concepts with the
linear approximation of vπe :

v̂πe(s) := wTx(s)

thus, in the linear case, we seek to find a weight vector
w, such that wTx(s) approximates the true value, vπe(s).
However, our empirical study also considers the non-linear
approximation of vπe . The error of the predicted value
function, v̂πe , with respect to the true value function, vπe ,
is measured by calculating the mean squared value error
between vπe(s) and v̂πe(s) ∀s ∈ S weighted by the pro-
portion of time spent in each state under policy πe, dπe(s).
Thus, we seek to find a weight vector w that minimizes:

MSVE(w) :=
∑
s∈S

dπe(s)

(
vπe(s)−wTx(s)

)2

(2)

In this work, we compare data efficiency between two
algorithms, X and Y , as follows:

Definition 1. Data Efficiency. A prediction algorithm X is
more data efficient than algorithm Y if estimates from X
have, on average, lower MSVE than estimates from Y for a
given batch size.

2.3. Batch Linear TD(0)

A fundamental algorithm for value prediction is the single-
step temporal difference learning algorithm, TD(0). Al-
gorithm 1 gives pseudo-code for the batch linear TD(0)
algorithm described by Sutton (1988).

Algorithm 1 Batch Linear TD(0) to estimate vπe

1: Input: policy to evaluate πe, behavior policy πb, batch
D, linear value function, v̂ : S × Rd → R, step-size
α > 0, convergence threshold ∆ > 0

2: Initialize: weight vector w0 arbitrarily (e.g.: w0 := 0),
aggregation vector u := 0, batch process counter, i = 0

3: while |wi+1 −wi| ≥ 1 ·∆ do
4: for each episode, τ ∈ D do
5: for each transition, (s, a, r, s′) ∈ τ do
6: ŷ ← r + γwT

i x(s′)

7: ρ← πe(a|s)
πb(a|s) {for on-policy, πb = πe}

8: u← u +
[
ρŷ −wT

i x(s)
]
x(s)

9: end for
10: end for
11: wi+1 ← wi + αu {batch update}
12: u← 0 {clear aggregation}
13: i← i+ 1
14: end while

Sutton (1988) proved that batch linear TD(0) converges to
a fixed point in the on-policy case i.e. when πe = πb. An
off-policy batch TD(0) algorithm uses importance sampling
ratios to ensure that the expected update is the same as it
would be if actions were taken with πe instead of πb (Precup
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et al., 2000a). Unlike on-policy TD(0), off-policy TD(0) is
not guaranteed to converge (Baird, 1995).

3. Convergence of Batch Linear TD(0)
In this section, we discuss the convergence of batch linear
TD(0) to a fixed-point, the certainty equivalence estimate
(CEE) for the underlying Markov reward process (MRP).
We refine this concept to better reflect our objective of eval-
uating a policy in an MDP and then prove that batch TD(0)
converges to an equivalent fixed point that ignores knowl-
edge of the known evaluation policy, πe, leading to inaccu-
racy in the value function estimate. This result motivates
our proposed algorithm.

First, we introduce additional notation and assumptions. In
this section, we assume that we are in the on-policy setting
(πb = πe). Let Ŝ be the set of states and Â be the set of
actions that appear in D and let R̄(s) be the mean reward
received when transitioning from state s in the batch D.
Finally, if the notation includes a hat (ˆ), it is the maximum-
likelihood estimate (MLE) according to D. For example,
π̂ is the MLE of πb. Sutton (1988) proved that batch lin-
ear TD(0) converges to the CEE. That is, it converges to
the exact value function of the maximum likelihood MRP
according to the observed batch. This exact value function
can be calculated using dynamic programming (Bellman,
2003; Bertsekas, 1987) with the MLE MRP transition func-
tion. We call this value function estimate the Markov reward
process certainty equivalence estimate (MRP-CEE).

Definition 2. Markov Reward Process Certainty Equiva-
lence Estimate (MRP-CEE) Value Function. The MRP-CEE
is the value function v̂MRP that, ∀s, s′ ∈ Ŝ, satisfies:

v̂MRP(s) = R̄(s) + γ
∑
k∈Ŝ

P̂ (s′|s)v̂MRP(s′). (3)

Having now defined the MRP-CEE value function, we prove
that batch TD(0) converges to the MRP-CEE value function.
This fact was first proven by Sutton (1988) (see Theorem 3
of Sutton (1988)), however the original proof only considers
rewards upon termination and no discounting. The extension
to rewards per-step and discounting is straightforward, but to
the best of our knowledge has not appeared in the literature
before. Following Sutton’s proof (Sutton, 1988), we first
prove the extension before extending the proof to an MDP,
where the data inefficiency of TD(0) becomes clear. Proof
details are in Appendix C.

Theorem 1 (Batch Linear TD(0) Convergence). For any
batch whose observation vectors {x(s)|s ∈ Ŝ} are linearly
independent, there exists an ε > 0 such that, for all positive
α < ε and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the
batch with weight updates after each complete presentation
to the fixed-point (3).

In RL, the transitions of an MRP are a function of the be-
havior policy and transition dynamics distributions. That is
∀s, s′ ∈ Ŝ:

P̂ (s′|s) =
∑
a∈Â

π̂(a|s)P̂ (s′|s, a),

R̄(s) =
∑
a∈Â

π̂(a|s)R̄(s, a)

where R̄(s, a) is the mean reward observed in state s on
taking action a. We define a new certainty-equivalence esti-
mate that separates these two factors. We call this new value
function estimate the Markov decision process certainty
equivalent estimate (MDP-CEE).
Definition 3. Markov Decision Process Certainty Equiva-
lence Estimate (MDP-CEE) Value Function. The MDP-CEE
is the value function, v̂π̂MDP, that, ∀s, s′ ∈ Ŝ, satisfies:

v̂π̂MDP(s) =
∑
a∈Â

π̂(a|s)

R̄(s, a) + γ
∑
s′∈Ŝ

P̂ (s′|s, a)v̂π̂MDP(s
′)


(4)

Given the definitions of P̂ and R̄, the MRP-CEE (Definition
2) and MDP-CEE (Definition 3) are equivalent. Theorem
2 gives the convergence of batch TD(0) to the MDP-CEE
value function. Proof details are in Appendix D.

Theorem 2 (Batch Linear TD(0) Convergence). For any
batch whose observation vectors {x(s)|s ∈ Ŝ} are linearly
independent, there exists an ε > 0 such that, for all positive
α < ε and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the
batch with weight updates after each complete presentation
to the fixed-point (4).

The MDP-CEE value function highlights two sources of es-
timation error in the value function estimate: P 6= P̂ and/or
πe 6= π̂. We describe the former as transition sampling
error and the latter as policy sampling error. Transition
sampling error may be unavoidable in a model-free setting
since we do not know P . However, we do know πe and can
use this knowledge to potentially correct policy sampling
error. In the next section, we present an algorithm that uses
the knowledge of πe to correct for policy sampling error and
obtain a more accurate value function estimate.

4. Batch Linear PSEC-TD(0)
In this section, we introduce the batch policy sampling er-
ror corrected-TD(0) (PSEC-TD(0)) algorithm that corrects
for the policy sampling error in batch TD learning. From
Theorem 2, batch TD(0) converges to the value function
for the maximum likelihood policy, π̂, instead of πe. Under
this view, PSEC-TD(0) treats policy sampling error as an
off-policy learning problem and uses importance sampling
(Precup et al., 2000a) to correct the weighting of TD(0)
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updates from π̂ to πe. Even though importance sampling is
usually associated with off-policy learning, this approach is
applicable in the on- and off-policy cases.

In addition to D and πe, we assume we are given a set of
policies, Π. Batch PSEC-TD(0) first computes the maxi-
mum likelihood estimate of the behavior policy:

π̂ := argmax
π′∈Π

∑
τ∈D

Lτ−1∑
t=0

log π′(aτt |sτt )

This estimation can be done in a number of ways. For
example, in the tabular setting we could use the empirical
count of actions in each state. This count-based approach is
often intractable, and hence, in many problems of interest
we must rely on function approximation. When using func-
tion approximation, the policy estimate can be obtained by
minimizing a negative log-likelihood loss function. Once π̂
is computed, the batch PSEC-TD algorithm is the same as
Algorithm 1 with π̂ replacing πb in the importance sampling
ratio. That is, for transition (s, a, r, s′) in D, the contribu-
tion to the weight update is u← u+

[
ρ̂ŷ −wT

i x(s)
]
x(s),

where ρ̂ := πe(a|s)
π̂(a|s) is the PSEC weight (refer to Line 8

in Algorithm 1). Thus, PSEC makes an importance sam-
pling correction from the empirical to the evaluation policy
distribution.

4.1. Convergence of Batch Linear PSEC-TD(0)

Section 3 showed that batch TD(0) converges to two equiva-
lent certainty-equivalence estimates. We now define a new
certainty-equivalent estimate (CEE) to which our new batch
PSEC-TD(0) algorithm converges. Intuitively, the MDP-
CEE estimate (Definition 3) is the exact value function for
the MLE of the behavior policy, π̂, in the MLE of the MDP
environment; our new algorithm converges to the exact
value function for πe in the MLE of the MDP environment,
making it more data efficient than batch TD(0) once the
batch size is large enough.

We define this new CEE as the PSEC Markov Decision
Process Certainty Equivalence Estimate (PSEC-MDP-CEE)
Value Function.
Definition 4. PSEC Markov Decision Process Certainty
Equivalence Estimate (PSEC-MDP-CEE) Value Function.
The PSEC-MDP-CEE is the value function, v̂πePSEC−MDP, that,
∀s, s′ ∈ Ŝ, satisfies:

v̂πePSEC−MDP(s) =
∑
a∈Â

πe(a|s)[R̄(s, a)

+ γ
∑
k∈Ŝ

P̂ (s′|s, a)v̂πePSEC−MDP(s
′))]

(5)

Theorem 3 states that batch PSEC-TD(0) converges to the
new PSEC-MDP-CEE value function (Equation 5). Proof
details are in Appendix E.

Theorem 3 (Batch Linear PSEC-TD(0) Convergence). For

any batch whose observation vectors {x(s)|s ∈ Ŝ} are
linearly independent, there exists an ε > 0 such that, for
all positive α < ε and for any initial weight vector, the
predictions for linear PSEC-TD(0) converge under repeated
presentations of the batch with weight updates after each
complete presentation to the fixed-point (5).

We remark that convergence has only been shown for the on-
policy setting. While PSEC-TD(0) can be applied in the off-
policy setting, it may, like other semi-gradient TD methods,
diverge when off-policy updates are made with function
approximation (Baird, 1995). It is possible that combining
PSEC-TD(0) with Emphatic TD (Mahmood et al., 2015) or
Gradient-TD (Sutton et al., 2009) may result in provably
convergent behavior with off-policy updates, however, that
study is outside the scope of this work.

4.2. Extending PSEC to other TD Variants

In general, PSEC can improve any value function learning
algorithm that computes the TD-error, δ, or equivalent errors.
As an example, we consider the off-policy least-squares TD
(LSTD) algorithm (Bradtke & Barto, 1996; Ghiassian et al.,
2018), which analytically computes the exact parameters
that minimize the TD-error in a batch of data using the
following steps:

A =
∑

(s,a,s′)∈D

[
ρ̂x(s)(x(s)− γx(s′))T

]
b =

∑
(s,a,s′)∈D

R(s, a, s′)x(s)

w = A−1b,

where ρ̂ is the PSEC weight. Even though we primar-
ily consider TD(0) in this work, the extension to LSTD
demonstrates that PSEC-TD can be extended to other value
function learning algorithms.

5. Empirical Study
In this section, we empirically study PSEC-TD to answer
the following questions:

1. Does batch PSEC-TD(0) lower MSVE compared to
batch TD(0)?

2. Does batch linear PSEC-TD(0) empirically converge
to its certainty-equivalence solution?

3. Does PSEC yield benefit when applied to LSTD?

4. What factors does PSEC’s data efficiency depend on
in the function approximation setting?

We briefly describe the RL domains used in our experiments.

• Gridworld: In this domain, an agent navigates a 4× 4
grid to reach a corner. The state and action spaces are



Reducing Sampling Error in Batch Temporal Difference Learning

discrete and we use a tabular representation for v̂πe .
PSEC-TD(0) uses count-based estimation for π̂. The
ground truth value function is computed with dynamic
programming and the MSVE computation uniformly
weights the error in each state. In Section 5.1, we
consider a deterministic gridworld, where there is no
transition dynamics sampling error.

• CartPole: In this domain, an agent controls a cart to
balance a pole upright. The state space is continuous
and action space is discrete. We only consider the
on-policy setting. The evaluation policy is a neural
network trained using REINFORCE (Williams, 1992).
It has 2 hidden layers with 16 neurons. We evaluate
PSEC with varying linear and neural network repre-
sentations for the value function. π̂ maps the raw state
features to a softmax distribution over the actions with
varying linear and neural network architectures. Since
the true value function is unknown, we follow Pan
et al. (2016) and use Monte Carlo rollouts from a fixed
number of states sampled from episodes following the
evaluation policy to approximate the ground-truth state-
values of those states. We then compute the MSVE
between the learned values and the average Monte
Carlo return from these sampled states.

• InvertedPendulum: This domain is similar to Cart-
Pole, and the objective is the same – to balance a pole
upright. However, the state and action spaces are both
continuous. We only consider the on-policy setting.
The evaluation policy is a neural network trained by
PPO (Schulman et al., 2017). The network has 2 hid-
den layers with 64 neurons each. We evaluate PSEC
with varying linear and neural network representations
for the value function. The π̂ estimate consists of two
components: 1) a linear or neural network mapping
from raw state features to the mean vector of a Gaus-
sian distribution, and 2) parameters representing the
log standard deviation of each element of the output
vector. As in CartPole, we compute Monte Carlo roll-
outs for sampled states.

In all experiments, the value function learning algorithm
iterates over the whole batch of data until convergence, after
which the MSVE of the final value function is computed.
Some experiments include a parameter sweep over the hy-
perparameters, which can be found in Appendix G.

5.1. Tabular Setting

In this set of experiments, we consider two variants of PSEC-
TD that differ in the placement of the PSEC weight:

• PSEC-TD-Estimate: Multiplies ρ̂ by the new estimate:
ŷ = R+ γwTx(s′).

• PSEC-TD: Multiplies ρ̂ by the TD error: δ = (R +
γwTx(s′))−wTx(s).

For off-policy TD(0), these placements of ρ̂ are equivalent
in expectation although the method using the TD-error has
been reported to perform better in practice (Ghiassian et al.,
2018). In this section, we focus on the on-policy results.
Appendix F.1 includes off-policy results.

5.1.1. DATA EFFICIENCY

Figure 1 answers our first and third empirical questions, and
shows that PSEC lowers MSVE compared to batch TD(0),
and a variant of TD(0), LSTD(0). The gap between PSEC
and its TD counterpart increases dramatically with more
data; we discuss this observation in Section 5.1.2.
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Figure 1. Deterministic Gridworld experiments. Both axes are log-
scaled. Errors are computed over 200 trials with 95% confidence
intervals. Asymmetric confidence intervals are due to log-scaling.
Figure 1(a) and Figure 1(b) compare the data efficiency of PSEC-
TD(0) and PSEC-LSTD(0) with their respective TD equivalents.
Lower MSVE is better.
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5.1.2. CONVERGENCE TO THE
PSEC-CERTAINTY-EQUIVALENCE

To address our second empirical question, we empirically
verify that both variants of batch linear PSEC, PSEC-TD and
PSEC-TD-Estimate, converge to the dynamic programming
computed PSEC-MDP-CEE value function (5) in Gridworld.
According to Theorem 3, batch linear PSEC-TD-Estimate
converges to the fixed-point (5) for all batch sizes.
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Figure 2. Additional Gridworld experiments. Errors are computed
over 50 trials with 95% confidence intervals. Figure 2(a) shows
MSVE achieved by variants of linear batch PSEC-TD(0), PSEC-
TD and PSEC-TD-Estimate, with respect to the PSEC-MDP-CEE
(5). Figure 2(b) shows the fraction of unvisited (s, a, s′) tuples.

We also empirically confirm that the other variant of PSEC,
PSEC-TD converges to the same fixed-point (5) when the
following condition holds true: only when all non-zero
probability actions for each state in the batch have been
sampled at least once. We note that when this condition
is false, PSEC-TD-Estimate treats the value of taking that

action as 0. For example, if a state, s, appears in the batch
and an action, a, that could take the agent to state s′ does
not appear in the batch, then PSEC-TD-Estimate treats the
new estimate R + γwTx(s′) as 0, which is also done by
the dynamic programming computation (5). We note that
PSEC-TD converges to the fixed-point (5) only when this
condition is true since the PSEC weight requires a fully
supported probability distribution when applied to the TD-
error estimate. From Figure 2(a) and Figure 2(b), we can
see that this condition holds at batch size of 10 episodes.
We also note that PSEC-TD(0) corrects policy sampling
error for each (s, a, s′) transition. Thus, when all such
transitions are visited, PSEC fully corrects for all policy
sampling error, which occurs at batch size of 10 episodes in
this deterministic gridworld.

5.2. Function Approximation Setting

In this set of experiments, we answer our first and fourth
empirical questions concerning function approximation in
PSEC. Our experiments focus on applying only the second
variant of PSEC, PSEC-TD, since we found that PSEC-TD-
Estimate diverges. The results shown below are for the
on-policy case. In addition to results of PSEC as a function
of data size, we conduct experiments on a fixed batch size
to better understand how components of the PSEC training
process impact performance. Finally, we give a practical
recommendation for use of batch PSEC-TD(0).

In these experiments, we have three function approximators:
one for the value function; one to estimate the behavior
policy; and the pre-learned behavior policy itself. When
any are referred to as “fixed", it means its architecture is
unchanged. Due to space constraints, we only show a subset
of results from CartPole and Inverted Pendulum; however, a
fuller set of experiments can be found in Appendix F.2 and
F.3. Note that in all PSEC training settings, PSEC performs
gradient steps using the full batch of data, uses a separate
batch of data as the validation data, and terminates training
according to early stopping. Statistical significance is de-
termined by Welch’s test (Welch, 1947) with a significance
level of 0.05. For hyperparameter details refer to Appendix
F.2 and F.3.

5.2.1. DATA EFFICIENCY

In CartPole, PSEC produced statistically significant im-
provement over TD in all batch sizes except 500. In In-
vertedPendulum, like in Gridworld, the improvement was
marginal for smaller batch sizes, but produced statistically
significant improvement with larger batch sizes. As data
gets larger, we observe that both methods perform similarly
for two reasons: 1) the PSEC weight approaches 1, which
effectively becomes TD(0) and 2) saturation in value func-
tion representation capacity, which we discuss in Section
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5.2.2. Note that while a thorough parameter sweep can
achieve better performance, it is computationally expensive.
The results shown here are with sweeps over only the value
function model class and PSEC learning rate.
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Figure 3. Comparing data efficiency of PSEC and TD on different
batch sizes. Results for Figure 3(a) and Figure 3(b) are averaged
over 400 and 250 trials resp. with shaded region of 95% confi-
dence. Both axes are log-scaled. Lower MSVE is better.

5.2.2. ARCHITECTURE MODEL SELECTION

Figure 4(a) illustrates the impact of different value function
classes on the data efficiency of TD and PSEC, while hold-
ing the PSEC model and behavior policy architectures fixed,
on CartPole. We generally found that more expressive value
function representations resulted in better data efficiency
by both algorithms. We also found that the gap between
PSEC and TD increased as the VF representation became
more expressive. We hypothesize that even though PSEC
finds a more accurate fixed point than TD in the space of

0-0 1-128 1-256 1-512
VF Model Architecture

0

100

200

300

M
S

V
E

TD(0)

PSEC-TD(0)

(a)

0-0 1-16 2-16 3-16 TD(0)
PSEC Model Architecture

0

50

100

M
S

V
E

(b)

Figure 4. Figure 4(a) and Figure 4(b) compare data efficiency of
PSEC, with varying VF model architectures, and PSEC, with
varying model arch, respectively against TD on CartPole. Both
use a batch size of 10 episodes, and results shown are averaged
over 300 trials with error bars of 95% confidence. Darker shades
represent statistically significant results. The label on the x axis
shown is (# hidden layers - # neurons). Lower MSVE is better.

all value functions, the shown difference between the two
algorithms is dependent on the space of representable value
functions – a more representable function class can capture
the difference between the two algorithms better. The lighter
shades mean that any difference between PSEC and TD was
statistically insignificant.

Figure 4(b) compares the data efficiency of PSEC against
TD with varying PSEC neural network model architectures,
while the value function and behavior policy architectures
are fixed, on CartPole. In general, we found that more ex-
pressive network models produced better PSEC weights
since they were able to better capture the MLE of the policy
from the data. Unlike the NN PSEC policies, the linear func-
tion PSEC policy did not produce a statistically significant
improvement over TD.

5.2.3. SENSITIVITY STUDIES

Due to space limitations, we defer the empirical analysis of
other effects to Appendices F.2 and F.3. Figure 7 and Figure
12 indicate that a small learning rate for the PSEC model is
preferred. Figure 9 and 14 indicate that some overfitting by
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the PSEC model is tolerable, and perhaps, preferable, but
extreme overfitting can degrade performance.

Practical Recommendation Based on our experiments,
we recommend the following: 1) an expressive value func-
tion that can represent the more accurate fixed-point of
PSEC-TD, 2) a PSEC model class that can represent the
true behaviour policy but with awareness that extreme over-
fitting may hamper performance, and 3) a small learning
rate.

6. Related Work
In this section, we discuss the literature on importance sam-
pling with an estimated behavior policy and reducing sam-
pling error in reinforcement learning.

The approach in this work has been motivated by prior work
showing that importance sampling with an estimated behav-
ior policy can lower variance when estimating an expected
value in RL. Hanna et al. (2019) introduce a family of meth-
ods called regression importance sampling methods (RIS)
and show that they have lower variance than importance
sampling with the true behavior policy. Hanna & Stone
(2019) show that a similar technique led to more sample-
efficient policy gradient learning. These works are related to
work in the multi-armed bandit (Li et al., 2015; Narita et al.,
2018; Xie et al., 2018), causal inference (Hirano et al., 2003;
Rosenbaum, 1987), and Monte Carlo integration (Henmi
et al., 2007; Delyon & Portier, 2016) literature. In contrast,
our work focuses on value function learning, where the fo-
cus is on learning the expected return at every state visited
by the agent instead of across a set of actions (multi-armed
bandit) or for some start states that are a subset of all the
states the agent visits.

PSEC-TD(0) corrects policy sampling error through impor-
tance sampling with an estimated behavior policy. Other
works avoid policy sampling error entirely by computing
analytic expectations. Expected SARSA (van Seijen et al.,
2009), learns action-values by analytically computing the
expected return of the next state during bootstrapping as
opposed to using the value of the sampled next action. The
Tree-backup algorithm (Precup et al., 2000b) extends Ex-
pected SARSA to a multi-step algorithm. Q(σ) (Asis et al.,
2017) unifies SARSA (Sutton, 1996; Rummery & Niran-
jan, 1994), Expected SARSA, and Tree-backups, to find a
balance between sampling and analytic expectation compu-
tation. Our work is distinct from these in that we focus on
learning state values which may be preferable for predic-
tion as well as a variety of actor-critic approaches (Konda
& Tsitsiklis, 2000; Mnih et al., 2016). To the best of our
knowledge, no other approach exists for correcting policy
sampling error when learning state values.

7. Summary and Discussion
In batch value function approximation, we observed that
TD(0) may converge to an inaccurate estimate of the value
function due to policy sampling error. We proposed batch
PSEC-TD(0) as a method to correct this error and showed
that it leads to a more data efficient estimator than batch
TD(0). In this paper, we theoretically analyzed PSEC-TD
and empirically evaluated it in the tabular and function ap-
proximation settings. Our empirical study validated that
PSEC converges to a more accurate fixed point than TD,
and studied how the numerous components in the PSEC
training setup impact its data efficiency with respect to TD.

Despite the data efficiency benefits that batch PSEC-TD(0)
introduced, there are limitations. First, it requires knowl-
edge of the evaluation policy, which on-policy TD(0) does
not. This comparative disadvantage is only for the on-policy
setting as both TD(0) and PSEC-TD(0) require knowledge
of the evaluation policy for the off-policy setting. Addition-
ally, PSEC-TD(0), in the off-policy case, has the advantage
of not requiring knowledge of the behavior policy πb. Sec-
ond, the policy estimation step required by PSEC-TD(0)
could potentially be computationally expensive. For in-
stance, requiring the computation and storage of O(|S||A|)
parameters in the tabular setting.

There are several directions for future work. First, our work
focused on batch TD(0). We expect that a variant of PSEC
can improve value function learning with n-step TD and
TD(λ). Second, with an improved value function learning
algorithm, it would be interesting to see if an agent can learn
better control policies. Third, it would be interesting to the-
oretically and empirically study PSEC when learning the
state-action values. Finally, automatically finding the opti-
mal training setting for PSEC in the function approximation
setting is another important direction for future work.
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A. Matrix Notation for Proofs
In this section, we introduce matrix-related notation for the proofs. Part of this notation is derived from Sutton (1988).
We refer to state features using vectors indexed by the state. So features x(i) for state i is referred to as xi. Reward
r(j|i, a) (the reward for transitioning to state j from state i after taking action a) is referred to by raij . The policy π(a|i)
is πai and the transition function P (j|i, a) is accordingly the value paij . N and T are the set of non-terminal and terminal
states respectively, and A is the set of possible actions. D is the batch of data used to train the value function. For any
transition from a non-terminal state to a (non-) terminal state, i → j, 1 ≤ i ≤ |N | and 1 ≤ j ≤ |N ∪ T |. Finally, the
maximum-likelihood estimate (MLE) of the above quantities according to D, is given with a hat (ˆ) on top of the quantity.
Further notations that are used in the proofs are explained when introduced.

Notation Description Dimension

S set of states |S|
Ŝ set of states that appear in batch D |Ŝ|
A set of actions |A|
Âi set of actions that appear in batch D when agent is in state i |Âi|
N ⊂ S non-terminal states |N |
N̂ ⊂ Ŝ non-terminal states that appear in batch D |N̂ |
T ⊂ S terminal states |T |
T̂ ⊂ Ŝ terminal states that appear in batch D |T̂ |
I identity matrix |N | × |N |
pπjk probability of transitioning from state j to state k under a policy, π -
pajk probability of transitioning from state j to state k after taking action a -
r̄j mean reward when transitioning from state j -
r̄aij mean reward when transitioning from state i to state j after taking action a -
Q Qjk := pπjk |N | × |N |

[m]i
expected reward on transitioning from state i to non-terminal state j i.e.∑
j∈N p

π
ijrij or

∑
j∈N

∑
a∈A π

a
i p
a
ijr

a
ij

|N |

[h]i
expected reward on transitioning from state i to non-terminal state j to terminal
state i.e.

∑
j∈T p

π
ijrij or

∑
j∈T

∑
a∈A π

a
i p
a
ijr

a
ij

|N |

dπe(i) ∀i ∈ S weighted proportion of time spent in state i under policy πe -

B. Fixed-point for an MDP in the Per-step Reward and Discounted Case
In this section, we establish several fixed-points that we expect the value function to converge to in the discounted per-step
reward case for an MRP and MDP. Note that Sutton (1988) derived these fixed-points for MRPs when rewards are only
received on termination and there is no discounting. We first specify the fixed-points for an MRP in the discounted per-step
reward case, and then extend this result for MDPs.

For both an MRP and MDP, we establish two types of fixed-points in the per-step reward and discounted case. The first
fixed-point is the true fixed-point in that it is the value function computed assuming that we have access to the true policy
and transition dynamics distributions. Ideally, we would like our value function learning algorithms to converge to this
fixed-point. The second fixed-point is the certainty-equivalence estimate fixed-point, which is the value function computed
using the maximum-likelihood estimates of the policy and transition dynamics from a batch of fixed data. We note that due
to sampling error in the policy and transition dynamics, the certainty-equivalence estimate is an inaccurate estimate of the
true value function. Finally, and only for MDPs, we specify the fixed-point that we expect the value function to learn after
applying PSEC.



Reducing Sampling Error in Batch Temporal Difference Learning

B.1. MRP True Fixed-Point

The true value function v for a state, i ∈ N , induced by the policy-integrated transition dynamics pπ , reward function r, and
policy, π, is given by:

v(i) =
∑

j∈N∪T
pπij [rij + γv(j)] Bellman equation

=
∑
j∈N

pπij [rij + γv(j)] +
∑
j∈T

pπijrij expected return from T , v(T ) = 0

=
∑
j∈T

pπijrij +
∑
j∈N

pπij

[
rij + γ

[ ∑
k∈N∪T

pπjk [rjk + γv(k)]

]]
recursively apply v(i)

v(i) =
∑
j∈T

pπijrij +
∑
j∈N

pπijrij + γ
∑
j∈N

pπij
∑

k∈N∪T

pπjkrjk

+ γ2
∑
j∈N

pπij
∑

k∈N∪T

pπjkv(k)

=
∑
j∈T

pπijrij +
∑
j∈N

pπijrij

+ γ
∑
j∈N

pπij
∑
k∈N

pπjkrjk + γ
∑
j∈N

pπij
∑
k∈T

pπjkrjk

+ γ2
∑
j∈N

pπij
∑
k∈N

pπjkv(k) splitting N and T

We define vectors, h and m with, [h]i =
∑
j∈T p

π
ijrij , [m]i =

∑
j∈N p

π
ijrij , and Q is the true transition matrix of the

Markov reward process induced by π and P , i.e., [Q]ij = pπij . Then continuing from above, we have

v(i) = [h]i + [m]i + γQ[h]i + γQ[m]i + γ2Q2[h]i + γ2Q2[m]i + . . . unrolling v(N ∪ T ) (6)

=

[ ∞∑
k=0

(γQ)k(m + h)

]
i

(7)

v(i) =
[
(I − γQ)−1(m + h)

]
i

(8)

The existence of the limit and inverse are assured by Theorem A.1 in Sutton (1988). The theorem is applicable here since
limk→∞(γQ)k = 0.

B.2. MRP Certainty-Equivalence Fixed -Point

For the certainty-equivalence fixed-point, we consider a batch of data,D. We follow the same steps and similar notation from
Equation (8), with the slight modification that the maximum-likelihood estimate (MLE) of the above quantities according to
D, is given with a hat (ˆ) on top of the quantity. The observed sets of non-terminal and terminal states in the batch are given
by N̂ and T̂ respectively.

Then similar to above, we can derive the certainty-equivalence estimate of the value function according to the MLE of the
MRP transition dynamics from the batch for a particular state i, ∀i ∈ N̂ is:

v̂(i) =
[
(I − γQ̂)−1(m̂ + ĥ)

]
i

(9)

B.3. MDP True Fixed-Point

The true value function, vπ , for a policy, π, for a state i, ∀i ∈ N , induced by the transition dynamics and reward function, p
and r is given by:
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vπ(i) =
∑
a∈A

πai
∑

j∈N∪T
paij
[
raij + γvπ(j)

]
Bellman equation

=
∑
a∈A

πai
∑
j∈N

paij
[
raij + γvπ(j)

]
+
∑
a∈A

πai
∑
j∈T

paijr
a
ij expected return from T , vπ(T ) = 0

vπ(i) =
∑
a∈A

πai
∑
j∈T

paijr
a
ij +

∑
a∈A

πai
∑
j∈N

paij

[
raij + γ

[∑
a′∈A

πa
′

j

∑
k∈N∪T

pa
′

jk

[
ra
′

jk + γvπ(k)
]]]

=
∑
j∈T

∑
a∈A

πai p
a
ijr

a
ij +

∑
j∈N

∑
a∈A

πai p
a
ijr

a
ij + γ

∑
j∈N

∑
a∈A

πai p
a
ij

∑
k∈N∪T

∑
a′∈A

πa
′

j p
a′

jkr
a′

jk

+ γ2
∑
j∈N

∑
a∈A

πai p
a
ij

∑
k∈N∪T

∑
a′∈A

πa
′

j p
a′

jkv
π(k)

=
∑
j∈T

∑
a∈A

πai p
a
ijr

a
ij +

∑
j∈N

∑
a∈A

πai p
a
ijr

a
ij

+ γ
∑
j∈N

∑
a∈A

πai p
a
ij

∑
k∈N

∑
a′∈A

πa
′

j p
a′

jkr
a′

jk + γ
∑
j∈N

∑
a∈A

πai p
a
ij

∑
k∈T

∑
a′∈A

πa
′

j p
a′

jkr
a′

jk

+ γ2
∑
j∈N

∑
a∈A

πai p
a
ij

∑
k∈N

∑
a′∈A

πa
′

j p
a′

jkv
π(k) splitting N and T

Similar to earlier, we have vectors, h and m with, [h]i =
∑
j∈T

∑
a∈A π

a
i p
a
ijr

a
ij , [m]i =

∑
j∈N

∑
a∈A π

a
i p
a
ijr

a
ij , and Q is

the true transition matrix of the Markov reward process induced by π and P , i.e., [Q]ij =
∑
a π

a
i p
a
ij . The terms are not

overloaded since the expectation over the true policy yields the same values. Then continuing from above, we have

vπ(i) = [h]i + [m]i + γQ[h]i + γQ[m]i + γ2Q2[h]i + γ2Q2[m]i + . . . unrolling vπ(N ∪ T ) (10)

=

[ ∞∑
k=0

(γQ)k(m + h)

]
i

(11)

vπ(i) =
[
(I − γQ)−1(m + h)

]
i

(12)

The existence of the limit and inverse are assured by Theorem A.1 in Sutton (1988). The theorem is applicable here since
limk→∞(γQ)k = 0.

B.4. MDP Certainty-Equivalence Fixed-Point

Similar to the above subsection, for certainty-equivalence fixed-point, we consider a batch of data, D, with the maximum-
likelihood estimate (MLE) of the above quantities according to D given with a hat (ˆ) on top of the quantity. The observed
sets of non-terminal and terminal states in the batch are given by N̂ and T̂ respectively.

Then similar to above, we can derive the certainty-equivalence estimate of the value function according to the MLE of the
policy and transition dynamics from the batch for a particular state i, ∀i ∈ N̂ is:

vπ̂(i) =
[
(I − γQ̂)−1(m̂ + ĥ)

]
i

(13)

This fixed-point is called the certainty-equivalence estimate (CEE) (Sutton, 1988) for an MDP. We note that MLE of the
policy and transition dynamics according to the batch may not be representative of the true policy and transition dynamics.
In that case, MDP-CEE (Equation (13)) is inaccurate with respect to Equation (12) due to policy and transition dynamics
sampling error.
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B.5. Policy Sampling Error Corrected MDP Certainty-Equivalence Fixed-Point

We now derive a new fixed-point, the policy sampling error corrected MDP certainty-equivalence fixed-point. This fixed-
point corrects the policy sampling error that occurs in the value function given by Equation (13), making the estimation
more accurate with respect to the true value function given by Equation (12).

We introduce the PSEC weight, ρ̂ai =
πai
π̂ai

, with π being the policy that we are interested in evaluating and π̂ being
the MLE of the policy according to batch D. ρ̂ is then applied to the above quantities to introduce a slightly modified
notation. In particular, ρ̂ applied to Q̂ results in [Û ]ij =

∑
a∈Âi ρ̂

a
i π̂

a
i p̂
a
ij , and applied to vectors ĥ and m̂ results

in [̂l]i =
∑
j∈T

∑
a∈Âi ρ̂

a
i π̂

a
i p̂
a
ij r̄

a
ij and [ô]i =

∑
j∈N

∑
a∈Âi ρ̂

a
i π̂

a
i p̂
a
ij r̄

a
ij respectively. After simplification, we have

[Û ]ij =
∑
a∈Âi π

a
i p̂
a
ij , [̂l]i =

∑
j∈T

∑
a∈Âi π

a
i p̂
a
ij r̄

a
ij , and [ô]i =

∑
j∈N

∑
a∈Âi π

a
i p̂
a
ij r̄

a
ij . Using these policy sampling

error corrected quantities, we can derive the fixed-point for true policy, π, in a similar manner as earlier:

vπ(i) =
[
(I − γÛ)−1(ô + l̂)

]
i

(14)

In computing this new fixed-point, we have corrected for the policy sampling error, resulting in a more accurate estimation
of Equation (12) than Equation (13). Now, the value function is computed for the true policy that we are interested in
evaluating, π.

C. Convergence of Batch Linear TD(0) to the MRP CE Fixed-Point

Theorem 1 (Batch Linear TD(0) Convergence). For any batch whose observation vectors {x(s)|s ∈ Ŝ} are linearly
independent, there exists an ε > 0 such that, for all positive α < ε and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the batch with weight updates after each complete presentation to the
fixed-point (3).

Proof. Batch linear TD(0) makes an update to the weight vector, wn (of dimension, length of the feature vector), after each
presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1)−wT
nxt

]
xt

where D is the batch of episodes, Lτ is the length of each episode τ , and α is the learning rate.

We can re-write the whole presentation of the batch of data in terms of the number of times there was a transition from state
i to state j in the batch i.e. ĉij = d̂ip̂ij , where d̂i is the number of times state i ∈ N̂ appears in the batch.
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wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1 −wT
nxt)

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

ĉij
[
(r̄ij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij
[
(r̄ij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij(r̄ij + γwT
nxj)xi − α

∑
i∈N̂

∑
j∈N̂∪T̂

d̂ip̂ij(w
T
nxi)xi

= wn + α
∑
i∈ ̂̂N

d̂ixi
∑

j∈N̂∪T̂

p̂ij(r̄ij + γwT
nxj)− α

∑
i∈N̂

d̂i(w
T
nxi)xi

∑
j∈N̂∪T̂

p̂ij

= wn + α
∑
i∈N̂

d̂ixi

 ∑
j∈N̂∪T̂

p̂ij(r̄ij + γwT
nxj)−wT

nxi

 ∑
j∈N̂∪T̂

p̂ij = 1

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

p̂ij(r̄ij + γwT
nxj)

+

∑
j∈T̂

p̂ij r̄ij

−wT
nxi

 If xj ∈ T̂ ,wT
nxj = 0

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

p̂ij r̄ij

+

γ∑
j∈N̂

p̂ijw
T
nxj

+

∑
j∈T̂

p̂ij r̄ij

−wT
nxi



wn+1 = wn + αX̂D̂
[
m̂ + γQ̂X̂Twn + ĥ− X̂Twn

]
(15)

where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with columns, xi ∈ Ŝ and D̂ is a diagonal
matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i. Given the successive updates to the weight vector wn, we now consider
the actual values predicted as the following by multiplying X̂T on both sides:

X̂Twn+1 = X̂Twn + αX̂T X̂D̂
(
m̂ + ĥ + γQ̂X̂Twn − X̂Twn

)
= X̂Twn + αX̂T X̂D̂

(
m̂ + ĥ

)
+ αX̂T X̂D̂

(
γQ̂X̂Twn − X̂Twn

)
= αX̂T X̂D̂

(
m̂ + ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))
X̂Twn

We then unroll the above equation by recursively applying X̂Twn till n = 0.

X̂Twn+1 = αX̂T X̂D̂
(
m̂ + ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))
αX̂T X̂D̂

(
m̂ + ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))2
X̂Twn−1

...

=

n−1∑
k=0

(
I − αX̂T X̂D̂

(
I − γQ̂

))k
αX̂T X̂D̂

(
m̂ + ĥ

)
+
(
I − αX̂T X̂D̂

(
I − γQ̂

))n
X̂Tw0 (16)
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Assuming that as n → ∞, (I − αX̂T X̂D̂(I − γQ̂))n → 0, we can drop the second term and the sequence {X̂Twn}
converges to:

lim
n→∞

X̂Twn =
(
I − (I − αX̂T X̂D̂(I − γQ̂))

)−1
(αX̂T X̂D̂(m̂ + ĥ))

= (I − γQ̂)−1D̂−1(X̂T X̂)−1α−1αX̂T X̂D̂(m̂ + ĥ)

= (I − γQ̂)−1(m̂ + ĥ)

lim
n→∞

E
[
xTi wn

]
=
[
(I − γQ̂)−1(m̂ + ĥ)

]
i
,∀i ∈ N̂

What is left to show now is n→∞, (I−αX̂T X̂D̂(I−γQ̂))n → 0. Following Sutton (1988), we first show that D̂(I−γQ̂)

is positive definite, and then that X̂T X̂D̂(I − γQ̂) has a full set of eigenvalues all of whose real parts are positive. This
enables us to show that α can be chosen so that eigenvalues of (I − αX̂T X̂D̂(I − γQ̂)) are less than 1 in modulus, which
assures us that its powers converge to 0.

To show that D̂(I − γQ̂) is positive definite, we refer to the Gershgorin Circle theorem (Gerschgorin, 1931), which states
that if a matrix, A, is real, symmetric, and strictly diagonally dominant with positive diagonal entries, then A is positive
definite. However, we cannot apply this theorem as is to D̂(I − γQ̂) since the matrix is not necessarily symmetric. To use
the theorem, we first apply another theorem (Theorem A.3 from Sutton (1988)) that states: a square matrix A is positive
definite if and only if A + AT is positive definite. So it suffices to show that D̂(I − γQ̂) + (D̂(I − γQ̂))T is positive
definite.

Consider the matrix S = D̂(I − γQ̂) + (D̂(I − γQ̂))T . We know that S is real and symmetric. It remains to show
that the diagonal entries are positive and that S is strictly diagonally dominant. First, we look at the diagonal entries,
Sii = 2[D̂(I − γQ̂)]ii = 2d̂i(1 − γp̂ii) > 0,∀i ∈ N̂ , which are positive. Second, we have the non-diagonal entries for
i 6= j as Sij = [D̂(I − γQ̂)]ij + [D̂(I − γQ̂)]ji = −γd̂ip̂ij − γd̂j p̂ji ≤ 0, which are nonpositive. We want to show
that |Sii| ≥

∑
j 6=i |Sij |, with strict inequality holding for at least one i; we know that the diagonal elements Sii > 0 and

non-diagonal elements Sij ≤ 0, i 6= j. Hence, to show that S is strictly diagonally dominant, it is enough to show that
Sii > −

∑
j 6=i Sij , which means we can simply show that the sum of each entire row is greater than 0, i.e.

∑
j Sij > 0.

Before we show that
∑
j Sij > 0, we note that d̂T = µ̂T (I − Q̂)−1 where µ̂i is the empirical state distribution of state i.

Given the definitions of d̂, µ̂, and Q̂, this fact follows from Kemeny et al. (1960) and is used by Sutton (1988). Using this
fact, we show that

∑
j Sij ≥ 0:

∑
j

Sij =
∑
j

(
[D̂(I − γQ̂)]ij + [D̂(I − γQ̂)]Tij

)
= d̂i

∑
j

([I − γQ̂]ij +
∑
j

d̂j [I − γQ̂]Tij)

= d̂i
∑
j

(1− γp̂ij) +
[
d̂T (I − Q̂)

]
i

= d̂i
∑
j

(1− γpij) +
[
µ̂T (I − Q̂)−1(I − Q̂)

]
i

d̂T = µ̂T (I − Q̂)−1

= d̂i(1− γ
∑
j

p̂ij) + µ̂i

≥ 0,

where the final inequality is strict since µ̂ is positive for at least one element. Given the above, we have shown that S is
real, symmetric, and strictly diagonally dominant; hence, S is positive definite according to the Gershgorin Circle theorem
(Gerschgorin, 1931). Since, S = D̂(I − γQ̂) + (D̂(I − γQ̂))T is positive definite, we have D̂(I − γQ̂) to be positive
definite.

Now we need to show that X̂T X̂D̂(I − γQ̂) has a full set of eigenvalues, all of whose real parts are positive. We know
that X̂T X̂D̂(I − γQ̂) has a full set of eigenvalues for the same reason shown by Sutton (1988), i.e. X̂T X̂D̂(I − γQ̂) is a
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product of three non-singular matrices, which means X̂T X̂D̂(I − γQ̂) is nonsingular as well; hence, no eigenvalues are 0
i.e. its set of eigenvalues is full.

Consider λ and y to be an eigevalue and eigenvector pair of X̂T X̂D̂(I − γQ̂). First lets consider that y may be a complex
number and is of the form y = a+ bi, and let z = (X̂T X̂)−1y, y 6= 0. Second, we consider D̂(I − γQ̂) from earlier i.e.
where ∗ is the conjugate-transpose:

y∗D̂(I − γQ̂)y = z∗X̂T X̂D̂(I − γQ̂)y substituting y∗

= z∗λy X̂T X̂D̂(I − γQ̂)y = λy

= λz∗X̂T X̂z substituting y

= λ(X̂z)∗X̂z

(aT − bT i)(D̂(I − γQ̂))(aT + bT i) = λ(X̂z)∗X̂z substituting y∗ and y

From the above equality, we know that the real parts (Re) of the LHS and RHS are equal as well i.e.

Re
(
y∗D̂(I − γQ̂)y

)
= Re

(
λ(X̂z)∗X̂z

)
aT D̂(I − γQ̂)a+ bT D̂(I − γQ̂)b = (X̂z)∗X̂zRe (λ)

LHS must be strictly positive since we already proved that D̂(I−γQ̂) is positive definite and by definition, RHS, (X̂z)∗X̂z,
is strictly positive as well. Thus, the Re(λ) must be positive. Finally, using this result we want to show that the eigenvalues
of (I − αX̂T X̂D̂(I − γQ̂)) are of modulus less than 1 for a suitable α.

First, we can see that y is also an eigenvector of (I − αX̂T X̂D̂(I − γQ̂)), since (I − αX̂T X̂D̂(I − γQ̂))y = y − αλy =

(1− λα)y, where λ′ = (1− αλ) is an eigenvalue of (I − αX̂T X̂D̂(I − γQ̂)). Second, we want to find suitable α such
that the modulus of λ′ is less than 1. We have the modulus of λ′:

‖λ′‖ = ‖1− αλ‖

=
√

(1− αa)2 + (−αb2) substituting λ = a+ bi of general complex form

=
√

1− 2αa+ α2a2 + α2b2

=
√

1− 2αa+ α2(a2 + b2)

<

√
1− 2αa+ α

2a

(a2 + b2)
(a2 + b2) using α =

2a

(a2 + b2)

=
√

1− 2αa+ 2αa = 1

From above, we can see that if α is chosen such that 0 < α < 2a
a2+b2 , then λ′ will have modulus less than 1. Then using the

theorem that states: if a matrix A has n independent eigenvectors with eigenvalues λi, then Ak → 0 as k →∞ if and only

if all ‖λi‖ < 1, which implies that limn→∞

(
I − αX̂D̂(I − Q̂)X̂T

)n
= 0, taking the trailing element in Equation (16) to

0 for a suitable α. We thus prove convergence to the fixed point in Equation (3) if a batch linear TD(0) update is used with
an appropriate step size α.

D. Convergence of Batch Linear TD(0) to the MDP CE Fixed-Point

Theorem 2 (Batch Linear TD(0) Convergence). For any batch whose observation vectors {x(s)|s ∈ Ŝ} are linearly
independent, there exists an ε > 0 such that, for all positive α < ε and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the batch with weight updates after each complete presentation to the
fixed-point (4).
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Proof. Batch linear TD(0) makes an update to weight vector, wn (of dimension, length of the feature vector), after each
presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1)−wT
nxt

]
xt

where D is the batch of episodes, Lτ is the length of each episode τ , and α is the learning rate.

We can re-write the whole presentation of the batch of data in terms of the number of times there was a transition from state
i to state j when taking action a in the batch i.e. ĉaij = d̂iπ̂

a
i p̂
a
ij , where d̂i is the number of times state i ∈ N̂ appears in the

batch.

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
(r̄t + γwT

nxt+1 −wT
nxt)

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

ĉaij
[
(r̄aij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂
a
ij

[
(r̄aij + γwT

nxj −wT
nxi)

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂ip̂
a
ij π̂

a
i (r̄aij + γwT

nxj)xi − α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂
a
ij(w

T
nxi)xi

= wn + α
∑
i∈ ̂̂N

d̂ixi
∑

j∈N̂∪T̂

∑
a∈Âi

p̂aij π̂
a
i (r̄aij + γwT

nxj)− α
∑
i∈N̂

d̂i(w
T
nxi)xi

∑
j∈N̂∪T̂

∑
a∈Âi

π̂ai p̂
a
ij

= wn + α
∑
i∈N̂

d̂ixi

 ∑
j∈N̂∪T̂

∑
a∈Âi

p̂aij π̂
a
i (r̄aij + γwT

nxj)−wT
nxi

 ∑
j∈N̂∪T̂

∑
a∈Âi

π̂ai p̂
a
ij = 1

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
i (r̄aij + γwT

nxj)

+

∑
j∈T̂

∑
a∈Âi

p̂aij π̂
a
i r̄
a
ij

−wT
nxi

 If xj ∈ T̂ ,wT
nxj = 0

= wn + α
∑
i∈N̂

d̂ixi

∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
i r̄
a
ij

+

γ∑
j∈N̂

∑
a∈Âi

p̂aij π̂
a
iw

T
nxj

+

∑
j∈T̂

∑
a∈Âi

p̂aij π̂
a
i r̄
a
ij

−wT
nxi



wn+1 = wn + αX̂D̂
[
m̂ + γQ̂X̂Twn + ĥ− X̂Twn

]
(17)

where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with columns, xi ∈ Ŝ and D̂ is a diagonal
matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i.

Notice that Equation (17) is the same as Equation (15) since the considered MRP and MDP settings are equivalent. Due to
this similarity, we omit the proof from here below as it is identical to the Theorem 1 proof.

E. Convergence of Batch Linear PSEC-TD(0) to the PSEC-MDP-CE Fixed-Point
E.1. PSEC Correction Applied to the New Estimate

We now show that batch linear PSEC-TD(0) converges to the policy corrected MDP-CE established in Equation (14).
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Theorem 3 (Batch Linear PSEC-TD(0) Convergence). For any batch whose observation vectors {x(s)|s ∈ Ŝ} are linearly
independent, there exists an ε > 0 such that, for all positive α < ε and for any initial weight vector, the predictions for linear
PSEC-TD(0) converge under repeated presentations of the batch with weight updates after each complete presentation to
the fixed-point (5).

Proof. The proof for PSEC-TD(0) follows in large part the structure of the proof for TD(0). Below we highlight the salient
points in the proof.

Batch linear PSEC-TD(0) makes an update to the weight vector, wn (of dimension, length of the feature vector), after each
presentation of the batch:

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
ρ̂t(r̄t + γwT

nxt+1)−wT
nxt

]
xt

where D is the batch of episodes, Lτ is the length of each episode τ , ρ̂t is the PSEC correction weight at time t for a given
episode τ , and α is the learning rate.

We can re-write the whole presentation of the batch of data in terms of the number of times there was a transition from state
i to state j when taking action a in the batch i.e. ĉaij = d̂iπ̂

a
i p̂
a
ij , where d̂i is the number of times state i ∈ N̂ appears in the

batch.

wn+1 = wn +
∑
τ∈D

Lτ∑
t=1

α
[
ρ̂t(r̄t + γwT

nxt+1)−wT
nxt

]
xt

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

ĉaij
[
ρ̂ai (r̄aij + γwT

nxj)−wT
nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂
a
ij

[
ρ̂ai (r̄aij + γwT

nxj)−wT
nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂iπ̂
a
i p̂
a
ij

[
πai
π̂ai

(r̄aij + γwT
nxj)−wT

nxi

]
xi

= wn + α
∑
i∈N̂

∑
j∈N̂∪T̂

∑
a∈Âi

d̂ip̂
a
ijπ

a
i (r̄aij + γwT

nxj)xi − α
∑
i∈N̂
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= wn + αX̂D̂

[
ô + γÛX̂Twn + l̂− X̂Twn

]
where X̂ denotes the matrix (of dimensions, length of the feature vector by |Ŝ|) with columns, xi ∈ Ŝ and D̂ is a diagonal
matrix (of dimensions, |Ŝ| by |Ŝ|) with D̂ii = d̂i.
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Assuming that as n → ∞, (I − αX̂T X̂D̂(I − γÛ))n → 0, we can drop the second term and the sequence {X̂Twn}
converges to:

lim
n→∞

X̂Twn =
(
I − (I − αX̂T X̂D̂(I − γÛ))

)−1
(αX̂T X̂D̂(ô + l̂))

= (I − γÛ)−1D̂−1(X̂T X̂)−1α−1αX̂T X̂D̂(ô + l̂)

= (I − γÛ)−1(ô + l̂)

lim
n→∞

E
[
xTi wn

]
=
[
(I − γÛ)−1(ô + l̂)

]
i
,∀i ∈ N̂

What is left to show now is that as n→∞, (I − αX̂T X̂D̂(I − γÛ))n → 0, which we can show by following the steps
shown for Equation (16). Thus we prove convergence to the fixed-point (5).

E.2. Convergence to the MDP True Fixed-Point with Infinite Data

With batch linear PSEC-TD(0) we have corrected for the policy sampling error in batch linear TD(0). The remaining
inaccuracy of the policy sampling corrected certainty-equivalence fixed-point is due to the transition dynamics sampling
error. In a model-free setting, however, we cannot correct for this error in the same way we corrected the policy sampling
error.

We argue that as the batch size approaches infinite, the maximum-likelihood estimate of the transition dynamics will
approach the true transition dynamics i.e. p̂→ p. It then follows that in expectation, the true value function will be reached.
Thus, the batch linear PSEC-TD(0) with an infinite batch size will correctly converge to the true value function fixed-point
given by Equation (12).

F. Additional Empirical Results
F.1. Tabular Setting: Discrete States and Actions

F.1.1. OFF-POLICY RESULTS

For off-policy TD(0), we always use the variant that applies the importance weight to the TD-error.
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Figure 5. Deterministic Gridworld experiments. Both axes are log-scaled, leading to the asymmetric confidence intervals. Errors are
computed over 50 trials with 95% confidence intervals. Figure 5(a) and Figure 5(b) compare the final errors achieved by variants of
PSEC-TD(0) and TD(0), and PSEC-LSTD(0) and LSTD(0) respectively for varying batch size in the off-policy case.

For off-policy TD(0) we only consider the PSEC-TD variant as we found multiplying the new estimate by the weight was
divergent. All methods show higher variance for the off-policy setting, however, PSEC-TD(0) variants still provide more
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accurate value function estimates.

F.1.2. EFFECT OF ENVIRONMENT STOCHASTICITY
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Figure 6. Additional Gridworld experiments. Errors are computed over 50 trials with 95% confidence intervals. Figure 6 is a y-axis log
scaled graph that shows the final error (averaged over 100 trials) achieved by the two variants of PSEC-TD(0) and TD(0) for a given batch
size (15 episodes) with varying levels of determinism of the transition dynamics.

According to Theorem 2, TD suffers from policy and transition dynamics sampling error. We study this observation through
Figure 6, which illustrates how the performance of PSEC changes with different levels of transition dynamics determinism
for a fixed batch size. In Gridworld, the determinism is varied according to a parameter, p, where the environment becomes
purely deterministic or stochastic as p→ 1 or p→ 0 respectively. From Theorem 3 we expect PSEC to fully correct for
the policy sampling error but not transition dynamics sampling error. Figure 6 confirms that PSEC is achieves a lower
final MSVE than TD as p → 1. As p → 0, the transition dynamics become the dominant source of sampling error and
PSEC-TD(0) and TD(0) perform similarly.

F.2. Function Approximation: Continuous States and Discrete Actions (CartPole)

In each experiment below, unless stated, the following components were fixed: a batch size of 10 episodes, the value
function was represented with a neural network of single hidden layer of 512 neurons using tanh activation, the gradients
were normalized to unit norm before the gradient descent step was performed, we used a learning rate of 1.0 and decayed
the learning rate by 10% every 50 presentations of the batch to the algorithm. The true MSVE was computed by 200 Monte
Carlo rollouts for 150 sampled states.

F.2.1. DATA EFFICIENCY

From Figure 3(a). Both algorithms used a learning rate of 1.0 and decayed the learning rate by 5% every 10 presentations
of the batch. The PSEC model architecture was a neural network with 3 hidden layers with 16 neurons each. Batch sizes
of 10, 50, and 500 episodes used a learning rate of 0.0125, batch size of 100 used 0.003125, and batch size of 1000 used
0.001563.

F.2.2. EFFECT OF VALUE FUNCTION MODEL ARCHITECTURE

From Figure 4(a). PSEC used a model architecture of 3 hidden layers with 16 neurons each and tanh activation, and learning
rate of 0.025.

F.2.3. EFFECT OF PSEC LEARNING RATE

Figure 7 compares the data efficiency of PSEC-TD vs TD for varying learning rates of the PSEC policy, while holding the
value function, PSEC model, and behavior policy architectures fixed, on CartPole. Since TD does not use PSEC, its error
for a given batch size is independent of the PSEC learning rate. From above, PSEC appears to be relatively stable in its
improvement over TD regardless of the learning rate used. The PSEC policy used in this experiment was a neural network
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Figure 7. Compares data efficiency of PSEC with varying learning rates against TD respectively on CartPole. Results use a batch size of
10 episodes, and results are averaged over 300 trials with 95% confidence error bars.

with: 3 hidden layers with 16 neurons each and tanh activation.

F.2.4. EFFECT OF PSEC MODEL ARCHITECTURE

From Figure 4(b). PSEC used a learning rate of 0.025. The chosen PSEC neural network models are with respect to the
behavior policy described earlier, a 2 hidden layered with 16 neurons architecture.

F.2.5. VARYING PSEC TRAINING STYLE

Lin-FT NN-FT PSEC TD(0)
PSEC Training Styles

0

50

100

M
S

V
E

Figure 8. Comparing data efficiency of varying training styles of PSEC against TD for a fixed batch size of 10 episodes. Results shown
are averaged over 300 trials and shaded region is 95% confidence. Darker shades represent statistically significant result.

Figure 8 illustrates the data efficiency of three variants of PSEC, while holding the value-function PSEC model, and behavior
policy architectures fixed. All three variants use the same PSEC model architecture as that of the behavior policy, and each
used a learning rate of 0.025 with tanh activation. The three variants are as follows: 1) Lin-FT is when PSEC initializes the
PSEC model to the weights of the behavior policy and trains on the batch of data by finetuning only the last linear layer, 2)
NN-FT is when PSEC initializes the PSEC model to the weights of the behavior policy but finetunes the all the weights of
the network, and 3) PSEC uses the same training style in the previous experiments, where the model is initialized randomly
and all the weights are tuned. We found that Lin-FT performed similarly to TD with a statistically insignificant improvement
over TD; we believe this may be so since Lin-FT is initialized to the behavior policy and since there are only few weights
to change in the linear layer, the newly learned Lin-FT is still similar to the behavior policy, which would produce PSEC
corrections close to 1 (equivalent to TD). Interestingly, tuning all the weights of the neural network did better when the
model was initialized randomly versus when it was initialized to the behavior policy.
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F.2.6. EFFECT OF UNDERFITTING AND OVERFITTING DURING PSEC POLICY TRAINING
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Figure 9. Comparing MSVE achieved and cross entropy loss (training (tr) and validation (val)) by variants of PSEC after each epoch of
training for a fixed batch size of 10 episodes. Results shown are averaged over 50 trials and shaded region is 95% confidence.

This experiment attempts to give an understanding of how the MSVE achieved by each PSEC variant is dependent on the
number of epochs the PSEC model was trained for, while holding the value-function, PSEC and behavior policy architectures
fixed. We conduct the experiment as follows: the PSEC algorithm performs 10 gradient descent steps (epochs) on the full
batch of data, after which the resulting training and validation mean cross-entropy losses are plotted along with the MSVE
achieved by that trained PSEC policy. For example, after 10 epochs, the training and validation loss of the PSEC model was
nearly 0.5 and the model achieved an MSVE of nearly 150.

Since computing the MSVE can be computationally expensive, as it requires processing the batch until the value function
converges, we change the learning rate decay schedule to starting with a learning rate of 1.0 but decaying learning rate
by 50% every 50 presentations of the full batch to the algorithm (this change is also the reason why these results may be
different from the ones shown earlier). All PSEC variants used a learning rate of 0.025 and PSEC model architecture of 2
hidden layers with 16 neurons each and tanh activation.

Figure 9 suggests that performance of PSEC, regardless of the variant, depends on the number of epochs it was trained for.
Naturally, we do want to fit sufficiently well to the data, and the graph suggests that some overfitting is tolerable. However,
if overfitting becomes extreme, PSEC’s performance suffers, resulting in MSVE nearly 1000 times larger than the minimum
error achieved (not shown for clarity). From the graph, we can see that the PSEC variant, which is initialized randomly,
starts to extremely overfit before the NN-finetune variant does, causing its MSVE to degrade before that of NN-finetune
variant. We also see that the Lin-finetune variant is not able to overfit since the last linear layer may not be expressible
enough to overfit, causing it to have a relatively stable MSVE across all epochs.
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F.2.7. EFFECT OF BEHAVIOR POLICY DISTRIBUTION
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Figure 10. Comparing data efficiency of PSEC against TD for a fixed batch size of 100 episodes when the behavior policy models a
discontinuous function. Results shown are averaged over 30 trials and shaded region is 95% confidence.

So far, PSEC has used a function approximator of the similar function class as that of the behavior policy i.e. both the
PSEC models and the behavior policy were neural networks of similar architectures. In this experiment, we evaluate the
performance of PSEC with a neural network policy when the behavior policy that models a discontinuous function generates
a larger batch size of 100 episodes, while the value function and PSEC model architectures are fixed. In particular, we use a
behavior policy in CartPole that does the following: if the sign of the pole angle is negative, move left with probability 0.75
and right with probability 0.25, and if the sign of the pole angle is positive, move right with probability 0.75 and left with
probability 0.25. The PSEC policy is a neural network with 3 hidden layers with 16 neurons each with tanh activation.

Figure 10 shows that PSEC performs much worse than TD when the behavior policy is the discontinuous type function
described above. We reason that the neural network finds it difficult to compute the MLE of the data since this discontinuous
distribution is “hard" to model; therefore, producing incorrect PSEC weights, which degrade its performance. While we can
largely ignore the distribution of the behavior policy, this experiment shows that PSEC may suffer in situations like the one
described.

F.3. Function Approximation: Continuous States and Actions (InvertedPendulum)

In each experiment below, unless stated, the following components were fixed: a batch size of 20 episodes, the value function
was represented with a neural network of 2 hidden layer with 64 neurons each using tanh activation, the gradients were
normalized to unit norm before the gradient descent step was performed, we used a learning rate of 1.0 and decayed the
learning rate by 5% every 10 presentations of the batch to the algorithm. The true MSVE was computed by 100 Monte
Carlo rollouts for 100 sampled states.

F.3.1. DATA EFFICIENCY

From Figure 3(b). The PSEC model architecture was a neural network with 2 hidden layers with 64 neurons each. Batch
sizes 10, 50, 100, 500, 1000 used a learning rate of 0.000781. Batch size of 10 used an L2 weight penalization of 0.02. All
used a value function model architecture of 3 hidden layers with 64 neurons each.

F.3.2. EFFECT OF VALUE FUNCTION MODEL ARCHITECTURE

From Figure 11(a). The PSEC policy is 2 hidden layers with 64 neurons each and used a learning rate of 0.000781.
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Figure 11. Comparing data efficiency of PSEC with varying VF model architectures against TD. Figure 11(a) use batch size of 20 episodes
, and results shown are averaged over 350 trials respectively with error bars of 95% confidence. Darker shades represent statistically
significant result. The label on the x axis shown is (# hidden layers - # neurons).

F.3.3. EFFECT OF PSEC LEARNING RATE
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Figure 12. Comparing data efficiency of PSEC with varying learning rates against TD for a fixed batch size of 20 episodes. Results shown
are averaged over 200 trials and error bar is 95% confidence.

Figure 12 compares the data efficiency of PSEC-TD to TD with varying learning rates for PSEC, while holding the PSEC
and value function architecture fixed. Unlike earlier, the PSEC learning rate heavily influences the learned value function in
the continuous state and action setting. In general, PSEC performance heavily degraded when the learning rate increased
(y-axis limited for clarity). Among the tested learning rates, 0.000781 was the optimal, giving a statistically significant
result.
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F.3.4. EFFECT OF PSEC MODEL ARCHITECTURE
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Figure 13. Comparing data efficiency of PSEC with varying model architectures against TD for a fixed batch size of 20 episodes. Results
shown are averaged over 200 trials and error bar is 95% confidence. Darker shades represent statistically significant result. The label on
the x axis shown is (# hidden layers - # neurons). The value function represented by 0-0 is a linear mapping with no activation function.

Figure 13 compares the data efficiency of PSEC-TD with TD with varying PSEC model architectures, while holding the
value-function and behavior policy architectures fixed. All the shown PSEC architectures used a learning rate of learning
rate 0.000781. Similar to our earlier findings, a more expressive network was able to better model the batch of data and
produce a statistically significant improvement over TD. Less expressive PSEC models performed worse than TD, and any
improvement was statistically insignificant. Note that the linear architecture used produced an MSVE of ∼ 5800 (not shown
for clarity) and its poor data efficiency with respect to TD(0) was statistically significant.

F.3.5. EFFECT OF UNDERFITTING AND OVERFITTING DURING PSEC POLICY TRAINING
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Figure 14. Comparing MSVE achieved, and training (tr) and validation (val) loss by PSEC after each epoch of training for a fixed batch
size of 20 episodes on InvertedPendulum. Results shown are averaged over 100 trials and shaded region is 95% confidence.

This experiment attempts to give an understanding of how the MSVE achieved by each PSEC variant is dependent on the
number of epochs the PSEC model was trained for, while holding the value-function, PSEC and behavior policy architectures
fixed on InvertedPendulum. The experiment is conducted in a similar manner as before except we perform 50 gradient
descent steps (epochs) before plotting the training and validation loss, and MSVE achieved by PSEC after the gradient steps.
The loss shown here is a regression loss detailed in Appendix G.3. Figure 14 suggests that performance of PSEC depends on
the number of epochs it was trained for. Naturally, we do want to fit sufficiently well to the data, and the graph suggests that
some overfitting is tolerable. However, if overfitting becomes extreme, PSEC’s performance suffers. If some overfitting is
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desirable, then early stopping is not the preferred principled approach to terminate PSEC model training. When computing
MSVE, we used the learning rate schedule specified at the beginning of this section. PSEC used a learning rate of 0.000781
and model architecture of 2 hidden layers with 64 neurons each and tanh activation.

G. Extended Empirical Description
In this appendix we provide additional details for our empirical evaluation.

G.1. Gridworld

Figure 15. The Gridworld environment. Start at top left, bottom right is terminal state, discrete action space consists of the cardinal
directions, and discrete state space is the location in the grid. This specific image was taken from this link.

This domain is a 4× 4 grid, where an agent starts at (0, 0) and tries to navigate to (3, 3). The states are the discrete positions
in the grid and actions are the 4 cardinal directions. The reward function is 100 for reaching (3, 3), −10 for reaching (1, 1),
1 for reaching (1, 3), and −1 for reaching all other states. If an agent takes an action that hits a wall, the agent stays in
the same location. The transition dynamics are controlled by a parameter, p, where with probability p, an agent takes the
intended action, else it takes an adjacent action with probability (1 − p)/2. All policies use a softmax action selection
distribution with value θsa, for each state, s, and action a. The probability of taking action a in state s is given by:

π(a|s) =
eθsa∑

a′∈A e
θsa′

In the on-policy experiments, the evaluation and behavior policies were equiprobable policies in each cardinal direction. In
the off-policy experiments, the evaluation policy was such that each θ was generated from a standard normal distribution
and behavior policy was the equiprobable policy.

For the comparisons of batch linear PSEC-TD(0) and TD(0), we conducted a parameter sweep of the learning rates for
the varying batch sizes. The parameter sweep was over: {5e−3, 1e−3, 5e−2, 1e−2, 5e−1}. We used a value function
convergence threshold of 1e−10. For PSEC-LSTD and LSTD, we stabilized the matrix, A, before inverting it by adding εI
to the computed A. We conducted a parameter sweep over the following: ε ∈ {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1}.

https://cran.csiro.au/web/packages/reinforcelearn/vignettes/environments.html
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G.2. CartPole

Figure 16. CartPole-v0 from OpenAI Gym (Brockman et al., 2016)

In this domain, the goal of the agent is to balance a pole for as long as possible. We trained our behavior policy using
REINFORCE (Williams, 1992) with the Adam optimizer (Kingma & Ba, 2014) with learning rate 3e−4, β1 = 0.9, and
β2 = 0.999. The behavior policy mapped raw state features to a softmax distribution over actions. The policy was a neural
network with 2 hidden layers with 16 neurons each, and used the tanh activation function and was initialized with Xavier
initialization (Glorot & Bengio, 2010).

The value function used by all algorithms was initialized by Xavier initialization and used the tanh activation function, and
was trained using semi-gradient TD (Sutton & Barto, 2018). We used a convergence threshold of 0.1.

The PSEC policy was initialized by Xavier initialization and used the tanh activation function. PSEC-TD sweeped over the
following learning rates α ∈ {0.1× 2.0j |j = −7,−6, ...1, 2}. It used a validation set of 10% the size of the batch size. It
used an L2 regularization of 2e−2. More details can be found in Section 5 and Appendix F.2.

G.3. InvertedPendulum

Figure 17. InvertedPendulum-v2 from OpenAI Gym and MuJoCo (Brockman et al., 2016; Todorov et al., 2012)

In this domain, the goal of the agent is to balance a pole for as long as possible. We trained our behavior policy using
PPO (Schulman et al., 2017) with the default settings found on Gym (Brockman et al., 2016). The policy was a neural
network with 2 hidden layers with 64 neurons each, and used the tanh activation function and was initialized with Xavier
initialization (Glorot & Bengio, 2010). It mapped state features to an output vector that represented the mean vector of a
Gaussian distribution. This mapping along with a separate parameter set representing the log standard deviation of each
element in the output vector, make up the policy. The policy was trained by minimizing the following loss function:
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L =

m∑
i=1

0.5((ai − µ(si))/e
σ)2 + σ

where m are the number of state-action training examples, ai is the action vector of the ith example, µ(si) is the mean vector
outputted by the neural network of the Gaussian distribution for state si, and σ is the the seperate parameter representing the
log standard deviation of each element in the output vector, µ(si).

The value function used by all algorithms was initialized by Xavier initialization and used the tanh activation function, and
was trained using semi-gradient TD (Sutton & Barto, 2018). We used a convergence threshold of 0.1.

The PSEC policy was initialized by Xavier initialization and used the tanh activation function. PSEC-TD swept over the
following learning rates α ∈ {0.1× 2.0j |j = −8,−6, ..., 1, 2}. It used a validation set of 20% the size of the batch size.
More details can be found in Section 5 and Appendix F.2.


