
In IEEE Robotics and Automation Letter, Presented at IROS 2020
July 2020

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a
Single Observed Demonstration*

Brahma S. Pavse�,1, Faraz Torabi�,1, Josiah Hanna2, Garrett Warnell3, and Peter Stone4

Abstract— Augmenting reinforcement learning with imitation
learning is often hailed as a method by which to improve
upon learning from scratch. However, most existing methods
for integrating these two techniques are subject to several
strong assumptions—chief among them that information about
demonstrator actions is available. In this paper, we investigate
the extent to which this assumption is necessary by introducing
and evaluating reinforced inverse dynamics modeling (RIDM), a
novel paradigm for combining imitation from observation (IfO)
and reinforcement learning with no dependence on demonstra-
tor action information. Moreover, RIDM requires only a single
demonstration trajectory and is able to operate directly on
raw (unaugmented) state features. We find experimentally that
RIDM performs favorably compared to a baseline approach
for several tasks in simulation as well as for tasks on a
real UR5 robot arm. Experiment videos can be found at
https://sites.google.com/view/ridm-reinforced-inverse-dynami.

I. INTRODUCTION

Two of the most prevalent paradigms for behavior learning
in artificial agents are imitation learning (IL) [1], [2] and
reinforcement learning (RL) [3]. Agents that use IL receive a
strong training signal in the form of an expert demonstration,
but because their goal is to imitate, their task performance is
typically bounded above by that of the expert. Agents using
RL, on the other hand, can theoretically learn behaviors that
are optimal with respect to a predefined task reward, but
often have difficulty doing so due to practical challenges such
as large state spaces and sparse reward functions. Because
of the relative advantages and disadvantages of each of
these paradigms, it is natural to investigate whether one can
integrate them in order to get the best of both methods.

While combining IL and RL has been explored to a certain
extent in the literature [4], [5], [6], several important issues
remain. Most importantly, these techniques require access to

*This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

�First Author and Second Author had equal contribution
1First Author and Second Author are with Computer Science Depart-

ment, University of Texas at Austin, USA brahmasp@utexas.edu,
faraztrb@cs.utexas.edu

2Third Author is with School of Informatics, University of Edinburgh,
Scotland. To be joining the Computer Sciences Department, University of
Wisconsin-Madison, USA. josiah.hanna@ed.ac.uk

3Fourth Author is with Army Research Laboratory, USA
garrett.a.warnell.civ@mail.mil

4Fifth Author is with Computer Science Department, University of Texas
at Austin and Sony AI, USA. pstone@cs.utexas.edu

Fig. 1. RIDM applies a task-specific inverse dynamics model, Mθ , on
the learner’s current state, st, to the expert’s next state, set+1, such that the
sequence of executed actions, {ãt}, maximizes the cumulative reward from
the environment. At each time step, the agent uses the expert’s next state,
set+1 (black dot), as the set point for Mθ . However, it actually reaches
st+1 (red dot) instead—which is typically not the set point—since RIDM
optimizes Mθ to maximize environment task reward instead of minimizing
trajectory-tracking error.

the internal control signals used by a demonstrator in order
to be able to leverage the demonstration information [7],
[6], [8]. This requirement makes it difficult to obtain useful
demonstrations since it necessitates a high level of internal
access to the demonstration platform, preventing, e.g., the
use of numerous, easily-accessible video demonstrations
available on websites like YouTube. A second limitation
of many existing techniques is the requirement for many
expert demonstrations [9], which makes obtaining sufficient
demonstration data difficult in that it requires a high level
of access to expert demonstrators. Finally, existing methods
typically assume that they have access to task-specific state
features during the learning process that can be used to make
learning easier [7], [10], [11]. Task-specific state features
are ones that somehow augment the agent’s natural (or raw
state information using additional domain knowledge—like
the distance to certain important subgoals—designed to make
reward function representation easier (see, e.g., Figure 2).
While providing this domain knowledge may be fairly easy
for a specific task, it will, in general, need to be specified
anew for each new task encountered and therefore represents
a practical impediment to using existing methods.

In this paper, we propose a new technique for integrating
IL and RL called reinforced inverse dynamics modeling
(RIDM) that bypasses the issues identified above. RIDM
leverages recent ideas from model-based imitation from
observation (IfO) to enable integrated imitation and rein-
forcement learning from a single, action-free demonstration
consisting of only raw states. Moreover, RIDM represents a
new paradigm for combining IL and RL in that the agent’s
behavior is based on following a fixed demonstration tra-

ar
X

iv
:1

90
6.

07
37

2v
4

 [
cs

.L
G

]
 2

1
Ju

l 2
02

0

https://sites.google.com/view/ridm-reinforced-inverse-dynami

jectory using a parameterized task-specific inverse dynamics
model (IDM) (see, Figure 1). A task-specific IDM is one
that maps state-transitions to actions for a specific task only
and and may not generalize to other tasks that have different
reward functions. While RIDM requires the demonstration
trajectory during execution, its overall objective is not to
imitate, but rather to maximize the external environment
reward. RIDM accomplishes this by using RL to tune the
IDM that attempts to follow the fixed demonstration such
that the resulting behavior leads to the highest environmental
reward. Formulating the overall RL problem in this way
allows RIDM to diverge from the demonstration if doing
so will lead to higher task reward, which is helpful when the
demonstration is sub-optimal. To the best of our knowledge,
we are the first to introduce an algorithm that combines IfO
and RL.

To evaluate our algorithm, we establish a baseline al-
gorithm by modifying a state-of-the-art IfO algorithm to
incorporate an external reward signal. We hypothesize that
RIDM will be able to outperform this baseline in the problem
of interest where a few, raw-state demonstration is provided.
We perform several quantitative experiments focused on both
simulated and real robot control tasks, and find that RIDM’s
unique, model-driven approach results in high-quality be-
havior trajectories that lead to better performance than the
baseline.

II. RELATED WORK

This section provides a broad outline of research related to
our work. The section is organized as follows. Section II-A
details the most related works on imitation from observation
and reinforcement learning. Section II-B discusses efforts in
integrating reinforcement learning and imitation learning.

A. Imitation from Observation and Reinforcement Learning

The focus of imitation from observation (IfO) [12], [13]
is to learn a policy that results in similar behavior as the ex-
pert demonstration with state-only demonstrations. There are
broadly two approaches: (1) model-based and (2) model-free.
In our work, we are focused on model-based approaches.

Many model-based IfO algorithms use an inverse dynam-
ics model, i.e., a mapping from state-transitions to actions.
The most related work to ours may be the work of Nair
et al.[14], who show the learner a single demonstration
of an expert performing some task with the intention of
the learner replicating the task. Their algorithm allows the
learner to undergo self-supervision by collecting states and
actions, which are then used to train a neural network inverse
dynamics model. The learned model is then applied on the
expert demonstration to infer the expert actions. The actions
are then executed to replicate the demonstrated behavior. An-
other method is behavioral cloning from observation (BCO)
[10], which consists of two phases. The first phase trains
an inverse dynamics model in a self-supervised fashion, and
applies the learned model on the expert demonstration(s) to
infer the expert actions. The second phase involves training
a policy by behavioral cloning (BC) [15], which maps the

expert states to the inferred actions. BCO, however, does
not factor in the environment reward to train the inverse
dynamics model or policy in either of the phases.

Iterative learning control (ILC) [16] is an older trajectory
tracking approach which operates in a repetitive manner to
improve its tracking precision. The methods developed in
ILC, often use PID controllers and attempt to optimize the
PID gains so that the agent follows the reference trajectory
more accurately. Our work differs from ILC in that our
objective is not accurate trajectory tracking, but rather to
maximize the available environment reward, and we use RL
to achieve that objective The benefit of our work is that if
the demonstration is sub-optimal, the final learned behavior
could potentially outperform the demonstrator’s.

The focus of reinforcement learning is to train agent to
learn a task in an environment by maximizing some notion
of cumulative reward. In our work, we are focused on
using black-box optimization methods. Some of the most
related works are as follows. Hwangbo et al. [17] propose
a method, ROCK*, for tuning a PD controller that performs
favorably to CMA-ES on their experiments. Calandra et al.
[18] use Bayesian Optimization to tune a state machine for
robotic locomotion. They also test their method on a linear
controller (which corresponds to a PD controller if the states
contain positions and velocities). Neuman-Brosig et al. [19]
apply Bayesian optimization for learning the parameters for
active disturbance rejection control. Leonetti et al. [20] use
controlled random search to tune a linear controller. Black
box optimization for controller tuning has also been applied
in several undergrad theses and reports [21]. Our work differs
from the mentioned past work in this area in that we integrate
IfO and RL which potentially helps with constraining the
amount of exploration required for learning the behavior.

B. Integrating Reinforcement Learning and Imitation Learn-
ing

Another area of research related to our work is dealing
with the case in which an expert demonstration may be
sub-optimal. One way to address this issue is by combining
reinforcement learning and imitation learning.

There has been significant effort to combine reinforcement
learning and imitation learning. For example, Taylor et al.
[4] introduced Human-Agent Transfer, an algorithm that
uses a human demonstration to build a base policy, which
is further refined using reinforcement learning on a robot
soccer domain. Lakshminarayanan et al.[5] uses a hybrid
formulation of reward and expert state-action information in
the replay buffer when training deep Q-network (DQN) to
speed-up the training procedure. Hosu et al.[22] use deep RL
to learn an Atari game but they use human checkpoint replays
as starting points during the learning process instead of re-
starting the game at the end of the episode. Subramanian
et al.[23] and Nair et al.[24] use IL information to alleviate
the exploration process in RL. Hester et al.[8] pre-train a
deep neural network by optimizing a loss that includes a
temporal difference (TD) loss as well as supervised learning
loss with the expert actions. Zhu et al. [6] optimize a

linear combination of the imitation reward outputted by
generative adversarial imitation learning (GAIL) [7] and the
task reward. These works assume that the learner has access
to the expert’s actions.

Our work is distinct from all these works in that we focus
on the integration of reinforcement learning and imitation
from observation where we only have access to expert state
trajectories – not the expert actions.

III. PRELIMINARIES

We begin by reviewing and establishing notation for re-
inforcement learning, imitation learning, and imitation from
observation.

A. Reinforcement Learning (RL)

We model agents interacting in an environment as a
Markov decision process (MDP). A MDP is denoted by the
tuple M = 〈S,A, T,R〉, where S is the state space of the
agent, A is the action space of the agent, T defines the
environment transition function that gives the probability of
the agent moving from one state to another given that the
agent took a particular action (i.e., T : S ×A× S → [0, 1]),
and R is the scalar-valued reward function that dictates the
reward received by the agent when moving from one state
to another via a particular action. In the context of the MDP
framework, the reinforcement learning problem is that of
optimizing the agent’s behavior so as to find a control policy,
π? : S → A, that the agent can use to maximize the total
cumulative reward it receives.

B. Imitation Learning (IL)

In contrast to reinforcement learning, imitation learning
involves a learner seeking to mimic the behavior of an expert
demonstrator rather than maximizing an external reward
signal. We denote demonstrations as De = {(set , aet)}, where
set denotes the state of the expert at a given time index t,
and aet denotes the action taken by the expert at that time.
Given one or many such demonstrations, the goal of IL is
to learn a control policy π that the learning (imitating) agent
can use to produce behavior similar to that of the expert.

IL in the absence of expert action information, i.e., when
De = {set}, is called imitation from observation (IfO). The
IfO problem is that of learning the same imitation policy
π as in IL, but without access to this action information.
The learner is shown only the states of the expert. In this
case, most IL methods no longer apply, and we must find
new strategies. We might try, for example, to infer the expert
actions {aet} to get {ãet} for each state {set}, and therefore
approximate D̃e = {(set , ãet)} and then apply conventional
IL methods as done by Torabi et al. [10]. In this work, we
study the problem of integrating IfO with RL.

IV. REINFORCED INVERSE DYNAMICS MODELING

We now introduce reinforced inverse dynamics modeling
(RIDM) – a new method for integrating IfO and RL. RIDM
learns a strategy by which an agent can select actions {ãt}
that allow it to achieve a high level of task performance when

it has available a single, state-only expert demonstration,
De = {set}.

RIDM does so by learning and using a task-sepcific inverse
dynamics model (IDM),Mθ, that infers which action to take
at any given time instant based on both the agent’s current
state and a desired next state, the set point. Under RIDM, the
agent’s actions are computed as ãt =Mθ(st, s

e
t+1), where

st is the learner’s current state and set+1 is the state of the
expert at the next time instant. The goal of RIDM is to find an
optimal θ such that the generated action sequence maximizes
the cumulative reward from the environment, Renv(Mθ).
That is, while RIDM selects which actions to take by using
the expert’s state sequence as a sequence of set points, it
evaluates its policy in relation to the environmental reward
as opposed to, e.g., the trajectory-tracking error. Note that
it may actually be desirable for the induced state sequence
to differ from that of the expert’s if doing so allows for
higher environment reward. Figure 1 depicts this process. To
the best of our knowledge, using such a scheme to perform
integrated IfO and RL is unique in the literature.

RIDM consists of two phases. The goal of the first phase
is to initialize the inverse dynamics model. This phase can
either be done by selecting θ at random, or – if a known
policy is available to the learner – by having the agent
generate its own set of state-action-next-state triples and
using supervised learning to fit θ to those triples. In the
second phase, RIDM alternates between generating agent
behavior according to θ and the expert demonstration, and
optimizing θ in response to the amount of environment
reward obtained by the generated behavior. During this
phase, the learner uses the demonstration to guide the agent’s
behavior (i.e., imitation), but uses the observed environment
reward to adjust θ such that actions leading to high rewards
are generated (i.e., reinforcement). The goal of this two-
phase procedure is to find the optimal policy in terms of total
task reward (which may outperform the expert) by using the
expert demonstration as a guide. The pseudo-code for RIDM
is given in Algorithm 1, and each phase is described in more
detail below. 1

A. Inverse Dynamics Model Pre-training

During RIDM’s optional first phase, an initial value for θ
is sought. This initialization is accomplished either through
the use of data collected by the learner using a pre-defined
exploration policy or, if such a policy is not available, by
selecting the parameter value at random. We allow for RIDM
to take advantage of an available exploration policy so that
it can achieve a reasonable level of task performance, which
is likely to get us into a good basin of attraction within the
optimization landscape.

In the case where an exploration policy πpre is available
(e.g. if a slow-walk policy is available and we want the agent

1Even though RIDM is described as a method that requires both envi-
ronment rewards and state-only demonstrations, the algorithm can be used
even if the reward is not available for instance by defining the reward as the
negative of the distance between the demonstrated state and the imitator’s
state at each time step.

Algorithm 1 RIDM
Require: Single, state-only demonstration De := {set}

1: if πpre available then
2: Generate Dpre := {(spret , apret)} using πpre

3: Initialize θ as the solution to (1)
4: else
5: Initialize θ uniformly at random
6: end if
7: while θ not converged do
8: for t = 0 : |De| − 1 do
9: ãt :=Mθ(st, s

e
t+1)

10: Execute ãt and record st+1 and reward rt
11: end for
12: Compute cumulative episode reward Renv =

∑
t rt

13: Update θ by solving (2)
14: end while
15: return θ∗

to learn a fast walk), RIDM computes an initial value for θ as
follows. First, the learner executes πpre in the environment
and records the resulting experience as a trajectory of length
T that we denote as Dpre = {(spret , apret , spret+1)}. The
initial value for θ is then computed by solving the following
supervised learning problem:

θ∗ = argmax

(
− 1

T

T∑
t=1

N∑
n=1

|Mθ(s
pre
t , spret+1)n − a

pre
tn |

max (apren)−min (apren)

)
,

(1)

where N is the dimensionality of the action space, apretn

denotes the scalar value of the nth component of the action
vector apret , and max(apren) denotes the maximum value of
apretn across all t. Above, notice that the goal of the opti-
mization problem is to select θ such that Mθ(s

pre
t , spret+1)n

is a good approximation of the true action value apretn . We
adopt the particular loss given above because we found that
it worked well in practice. It is able to effectively trade
off short-term errors in order to optimize the differences
across a full trajectory, and the normalization term ensures
greater accuracy for actions which vary over a smaller range.
RIDM solves (1) using a blackbox optimization technique
(e.g., CMA-ES[25]). Note, however, that this pre-training
phase is optional, and only possible when RIDM has access
to an exploration policy that generates a behavior that is
qualitatively similar to the desired end behavior.

B. Inverse Dynamics Model Reinforcement

RIDM’s required second phase seeks to iteratively update
the inverse dynamics model parameters in response to the
environment return. The process executed here is illustrated
in Figure 1, where one can see that RIDM uses the expert’s
demonstration as a behavior template in the sense that the
expert’s state trajectory is used as a sequence of set points
to guide behavior.

The iterative updates to θ are computed as follows. First,
the learner usesMθ and the expert demonstration to generate

a trajectory of experience. It does so by, when in state
st at time step t, executing action ãt = Mθ(st, s

e
t+1),

which results in a transition to state st+1 and the obser-
vation of reward rt. After this trajectory has been generated,
the learner computes the cumulative environment reward
Renv(D

e ; θ) =
∑
t rt, which is dependent on both the

(fixed) expert demonstration data De and the (tunable) model
parameters θ. In a given iteration, i, an update to θ is
computed as the solution to:

θi = argmaxRenv(D
e ; θi−1) . (2)

It is important to note that, here, expert’s actions are
unknown. While Renv(D

e ; θ) is used to reinforce the
learning of the inverse dynamics model parameters, the
learner is always guided by the same, fixed, state-only expert
demonstration trajectory.

For each iteration of the above procedure, RIDM solves (2)
again using a blackbox optimization technique (eg., CMA-
ES[25] or Bayesian optimization[26]).

V. EMPIRICAL RESULTS

We now empirically validate our hypothesis, i.e., that
behaviors learned using RIDM will outperform those learned
by the established baseline. We focus on the case in which
only a single, state-only demonstration is available to the
agent and no task-specific state augmentation can be per-
formed. Our experiments are executed in multiple robot
control domains: simulated tasks are carried out in the
MuJoCo and SimSpark simulators, and several manipulation
tasks are carried out on a UR5 robot arm. In the first set
of experiments with the MuJoCo simulator, neural networks
are used to model IDMs since such models have proven
effective in these domains in the literature. A neural network
IDM gets one (state,next-state) pair as input and outputs the
Gaussian distribution parameters from which an action is
to be sampled and executed by the agent. In the rest of
the experiments, i.e., the SimSpark simulator and physical
tasks, PID controllers are used to model IDMs since, again,
these have proven effective in these domains in the past. PID
controllers are not exactly inverse dynamics models due to
their differential and integral terms. However, they retain the
essential characteristic that RIDM requires, i.e., that, given
a current state and desired next state (or set point), they will
generate an action that attempts to reach the set point. In the
training process, the next state (or set point) at each time
step is fixed according to the demonstration, and RIDM uses
reinforcement learning to tune the IDM parameters (either
NN parameters or PID gains) such that the overall agent
behavior can best maximize an external environment reward.
RIDM uses CMA-ES[25] in all the simulated experiments,
but uses Bayesian optimization[26] in the physical robot
experiments to learn the inverse dynamics model due to its
superior sample complexity.

This section is organized as follows. First, we provide
experimental motivation for studying RIDM in the single,
state-only demonstration and raw state space case. Next, we
establish a reasonable IfO+RL baseline that can also operate

in this regime, and we validate our hypothesis by comparing
RIDM to this baseline. In each of our evaluations, we scale
the reported performance metrics such that a score of 0
corresponds to the behavior of a random policy, and a score
of 1 corresponds to the behavior of the expert. Note that,
when the expert performance is sub-optimal, because we are
combining imitation learning with reinforcement learning, it
is reasonable to expect that the algorithm will outperform
the expert on some tasks. Finally, we conclude this section
by reporting additional empirical results for applying RIDM
to both simulated robot soccer skill learning and to learning
to perform a behavior on a physical UR5 arm robot.

A. Experimental Setup

Prior research has established that the availability of
demonstrator action information and many demonstration
trajectories are critical for the success of existing imitation
learning algorithms [10], [11]. While RIDM is advantageous
in that it does not depend on the availability of the above
information, we have also claimed that it can operate directly
on raw state information that has not been augmented using
extra knowledge of the task which, of course, is typically un-
known or difficult to obtain. We now seek to experimentally
motivate the need for overcoming this issue by showing the
level of reliance on these augmented state spaces in many
existing imitation and reinforcement learning algorithms.

In Figure 2, we compare the scaled performance of an
imitation from observation algorithm (GAIfO[11]) and a
reinforcement learning algorithm (TRPO[27]) when they are
given access to an augmented state space vs. when they are
exposed to only the raw state space on six tasks from the
MuJoCo domain [28] 2. Here, the raw state space refers
to the list of joint angles, and the augmented state space
also includes task-specific information. For instance, in the
Hopper task, the augmented state space includes the agent’s
global position which is advantageous in that it is more
highly correlated with the reward signal (see, e.g., [11], [29],
[7], [27], [30]). In this specific task, the agent’s goal is that of
controlling the limbs of a 2D, one-legged robot such that it
moves forward as fast as possible. The task reward given per
time step corresponds to the change in global position of the
agent, and since this information appears in the augmented
state information, both learning algorithms perform much
better (except for GAIfO in the Ant domain, perhaps due
to the very large (111 dimensional) augmented state space).
This advantage can be seen in Figure 2, where the high
reliance of GAIfO[11] and TRPO[27] on the augmented state
space is readily apparent. Such augmentations are, in general,
restrictive in that they need to be redefined for each new task.

Because we seek to remove the above restriction, we
use only the joint angles as the raw state information
in our experiments. Many robots are comprised of joints,
and therefore a joint-only representation is reasonably task-
independent. The core results of our algorithm are exclu-

2The MuJoCo experiments use all the standard settings, e.g., the reward
functions, the goals, and the augmented state spaces, as defined in the
MuJoCo code base.

Reacher HalfCheetah Swimmer Hopper Ant Walker2d
Domain

0.0

0.5

1.0

S
ca

le
d

P
er

fo
rm

an
ce

TRPO (Raw)

TRPO (Augmented)

GAIfO (Raw)

GAIfO (Augmented)

Fig. 2. Quantitative exhibition of the importance of an augmented state
space for high performance on six MuJoCo domains for GAIfO and TRPO.
Mean and standard deviations are over 100 policy runs. Both methods use
a neural network parameterized policy.

sively concerned with dealing with the above case, i.e., single
state-only demonstration consisting of joint angles.

B. RIDM Applied to MuJoCo Simulation

We now present our core results. This section is organized
as follows. Section V-B.1 proposes a reasonable baseline
to compare against our method. Section V-B.2 presents the
performance of our algorithm against this baseline.

1) Baseline: GAIfO+RL: To the best of our knowledge,
there is no method in the existing literature which can operate
in the experimental setting of interest. Therefore, in order to
understand the effectiveness of RIDM, we first propose the
natural combination of the best existing algorithms for the
components of RIDM, namely IfO and RL as the baseline.

GAIfO+RL is based on the current state-of-the-art imita-
tion from observation algorithm, GAIfO[11]. Starting from
GAIfO, GAIfO+RL integrates RL by modifying the reward
function used during the agent update step. Instead of the
reward function being determined solely by the discriminator
as in GAIfO, GAIfO+RL integrates imitation and reinforce-
ment learning by defining a new reward function that is a
linear combination of the discriminator’s output and the task
reward [6].

In Figure 3, we establish that GAIfO+RL is a strong
baseline by evaluating the performance of GAIfO alone,
RL alone (TRPO/PPO), and GAIfO+RL. All three methods
operate in the raw (un-augmented) state space, and GAIfO
and GAIfO+RL are also given access to a single, state-only
demonstration. While the performance of either pure IfO or
pure RL alone is relatively poor, we can see that GAIfO+RL
achieves significantly higher performance than its parts.
Moreover, GAIfO+RL operates in the same established
regime and belongs to the same class of IfO+RL algorithms
as RIDM, and therefore seems to be a reasonable imitation
from observation + reinforcement learning algorithm.

2) Hypothesis Validation: We conducted an experiment
comparing the scaled performance of RIDM against that
of the GAIfO+RL baseline on six tasks from the MuJoCo
domain. The experts are generated using TRPO/PPO with
augmented states. However, the demonstrated trajectories
only include the raw state information. Here, we first model

Reacher HalfCheetah Swimmer Hopper Ant Walker2d
Domain

0.00

0.25

0.50

0.75

1.00

S
ca

le
d

P
er

fo
rm

an
ce

GAIfO

TRPO/PPO

GAIfO + RL

Fig. 3. Establishment of GAIfO+RL as a reasonable IfO+RL baseline
to compare against RIDM. All methods use the same single state-only
demonstration consisting of only raw states (exclusively of joint angles).
Mean and standard deviations are over 100 policy runs. All methods use a
neural network parameterized policy.

Reacher HalfCheetah Swimmer Hopper Ant Walker2d
Domain

0.00

0.25

0.50

0.75

1.00

S
ca

le
d

P
er

fo
rm

an
ce

GAIfO + RL

RIDM with NN

Fig. 4. Comparison of RIDM final performace against established baseline,
GAIfO+RL, on the MuJoCo domain on the same single state-only demon-
stration consisting of only raw states (exclusively of joint angles). Mean and
standard deviations for GAIfO+RL and RIDM are over 100 policy runs.
GAIfO+RL uses a neural network parameterized policy. For each domain,
in order of x-axis, the numbers of iterations required for RIDM are 700,
800, 400, 100, 900, and 1300 and for GAIfO+RL are 400, 800, 1000,
1000, 1200, and 1500

the inverse dynamics model using a neural network and
train the network to maximize the received reward while
attempting to follow the expert trajectory. The results are
presented in Figure 4. It can be seen that RIDM outperforms
GAIfO+RL in five of the domains. The only domain that the
performance is worse than the baseline is the Ant domain.
We speculate that the neural network IDM is not able to
learn a meaningful model due to the complexity of the
domain resulting from the large number of joints compared
to each of the other domains. In Section VI, we show that
if RIDM uses a lower-dimensional parameterized IDM (e.g.
a PID controller), the performance of the learning agents is
improved.

C. RIDM Applied to SimSpark RoboCup 3D Simulation

We now report the results of using RIDM to learn
agent behaviors in the RoboCup 3D simulation environment,
SimSpark[31], [32]. Specifically, our goal was to determine
whether or not RIDM could imitate agent skills exhibited by
the agents of other teams that participate in the RoboCup 3D
simulation competition [33]. Since the opponent’s policies
are unknown, we obtain the demonstration by executing the
teams’ computer-readable but non-human-readable code in
the environment.

In our experiments, we are interested in two tasks: (1)
speed walking, and (2) long distance kick-offs. We collect

0 200 400 600 800 1000
Number of Iterations

0.00

0.25

0.50

0.75

1.00

1.25

S
ca

le
d

P
er

fo
rm

an
ce

GAIfO + RL

RIDM with NN

Fig. 5. Comparison of RIDM learning process against established base-
line, GAIfO+RL, on the Swimmer domain on the same single state-only
demonstration consisting of only raw states (exclusively of joint angles).
Solid lines represent the mean return and shaded areas represent standard
deviations over 10 trials. While the shown graph is for Swimmer-v2, we
observed the same qualitative trend on other domains as well.

TABLE I
RIDM VS. EXPERT FOR SPEED WALKING.

Expert Agent Speed (m/s) Reward

FCP RIDM (ours) 0.81 9.82
Expert 0.69 8.35

FUT-K RIDM (ours) 0.89 10.70
Expert 0.70 8.47

demonstration data of two teams, FC Portugal (FCP) [34] and
FUT-K [35]. RIDM pre-trained the model (see Section IV-
A) using walk and kick exploration policies from our own
team, UT Austin Villa[33]. Here, we report results using
only RIDM since it proved infeasible to evaluate GAIfO+RL
in this domain due to the computational time complexity.
We found that RIDM performed best with global PD gains
common to all joints as the inverse dynamics model.

Below are the reward function details of each task:

• Speed walking: Summation of distances (meters) trav-
elled per time-step with a −5 penalty for falling down.

• Long-distance kick-off:

Rkick = (1 + xtotal) · exp
(−θ2
180

)
+ xair · 100

with a penalty −5 for bumping the ball, −10 for falling
down, where xtotal is the x-axis distance traveled by the
ball, θ is the angle between the ball’s trajectory and the
line between the agent and center of the goal, and xair
is the x-axis distance for which the ball was traveling
in the air. Distances are in meters, and θ is in degrees.

Since we defined these reward functions independently from
the demonstrations, the demonstrations do not optimize
the reward signals. The demonstrators are trained for the
RoboCup task; their performances are sub-optimal with
regards to our designed reward functions.

Tables I and II and summarize our results. We report both
the performance of the expert and our agent. We can see that,
since RIDM takes advantage of both the reward functions
and the demonstrations, it allows our agents to outperform
the sub-optimal experts.

TABLE II
RIDM VS. EXPERT FOR LONG-DISTANCE KICK OFFS.

Expert Agent xair (m) xtotal (m) Reward

FCP RIDM (ours) 13.78 24.05 1386.00
Expert 8.00 17.00 808.00

FUT-K RIDM (ours) 10.62 16.23 1064.00
Expert 0.00 10.00 1.00

D. RIDM Applied to a Physical UR5 Robot Arm

We also used RIDM for behavior learning on a physical
robot. Specifically, we used a UR5, a 6-degree-of-freedom
robotic arm. We considered a reaching task in which the arm
begins in a consistent, retracted position, then must move
its end effector (i.e., the gripper at the end of the arm) to a
target point in Cartesian space, and finally must stop moving
once the end effector has reached the target point. We trained
the expert by iterating between iLQR [36] and dynamics
learning with a specified reward function. We then executed
this expert policy and recorded the resulting trajectories to
create the demonstration data [37].

For the physical arm experiments, we skip the pre-training
phase for two reasons: 1) we did not have access to a sub-
optimal policy for each task, and 2) for safety concerns, we
did not want to use a random exploration policy. For RIDM’s
second phase, we used a reward function defined as the
negative of the Euclidean distance of the end effector of the
arm to the target point at each timestep. We used Bayesian
optimization[26] as the blackbox optimization algorithm to
update the model parameters in response to the environ-
ment reward. Bayesian optimization works by constructing
a posterior distribution over the space of functions being
optimized over. Here, this distribution was represented using
a Gaussian process over functions that map PID values to
the episode returns. As the training proceeds and more data
is observed, Bayesian optimization techniques sharpen the
posterior, resulting in more certainty as to which regions of
the parameter space are worth exploring further with more
trials and which are not. For simpler optimization problems,
Bayesian optimization is more sample efficient compared to
CMA-ES and converges within a few iterations.

Table III represents the results of our experiments on
the UR5, where we compare RIDM to a baseline behavior
generated by using the demonstration state sequence as
set points for the platform’s pre-defined, hard-coded PID
controller parameterization. The reported numbers are the
averages and standard deviations of episode returns over five
separate experiments all of which are reaching tasks with
different target points. Table III shows that while RIDM
outperforms the original PID, it is worse than the expert.
The reason is that the expert is optimal with regards to the
designed reward function.

VI. ADDITIONAL RESULTS

Due to the high performance of RIDM with PID con-
trollers, we performed another set of experiments on the
MuJoCo domains that used a PID controller as the IDM

TABLE III
RIDM VS. ORIGINAL PID CONTROLLER VS. EXPERT.

Agent Reaching Pushing Pouring

RIDM (ours) -11.94 (1.55) -19.01 (1.03) -5.87 (0.08)

Original PID controller -36.57 (0.97) -58.98 (0.15) -15.67 (0.68)

Expert -5.64 (0.76) -8.43 (0.11) -2.31 (0.04)

Reacher HalfCheetah Swimmer Hopper Ant Walker2d?
Domain

0.00

0.25

0.50

0.75

1.00

S
ca

le
d

P
er

fo
rm

an
ce

Max PID in Random Search

RIDM with NN

RIDM with PID

Fig. 6. Comparison of RIDM with PID as the IDM versus RIDM with
NN as the IDM and the maximum performance between the randomly
generated PID values on the MuJoCo domain on the same single state-only
demonstration consisting of only raw states (exclusively of joint angles).
Since RIDM with PID uses a deterministic inverse dynamics model, we
do not report mean or standard deviations of our algorithm. ?PID version
of RIDM used global PID gains for Walker2d-v2, unlike on other domains
where it used local PD gains.

instead of a neural network. We compare RIDM with PID
controller to 1) RIDM with NN (from Figure 4) and 2) best-
performing randomly generated PID gains. We determined
the best-performing random PID gain by sampling 100
sets of PID gains from a Gaussian distribution with mean
[0.45, 0.75, 0.15] and standard deviation [.5, .5, .5] (each in-
dex in the list corresponds to P, I, and D), and selecting the
best-performing set. Figure 6 provides experimental results
for all six of the domains. One can see that RIDM with a
PID controller performs similarly to RIDM with an NN, and
in more complex domains such as Ant and Walker2d, sig-
nificantly outperforms it. The reasonably good performance
of random PID gains shows us that even an un-trained PID
controller is an effective IDM. RIDM with a PID controller
is able to focus on optimizing just the (very few) parameters
of the PID controller (i.e., the gains) as opposed to a neural
network policy, where the policy space is much larger.

VII. CONCLUSION

In this paper, we investigated whether or not several
restrictive assumptions common to many techniques that
integrate imitation and reinforcement learning – access to
demonstrator action information, access to several demon-
strations, and knowledge of task-specific state augmentations
– are necessary. We hypothesized that they are not, and
we proposed a new algorithm called RIDM in order to
validate that hypothesis. RIDM is a fundamentally new
method for integrated imitation and reinforcement learning
that operates in scenarios for which only a single, raw-state-
only demonstration is provided. We experimentally demon-
strated that RIDM can find behaviors that achieve good task

performance in these scenarios. Moreover, our results show
that it outperforms a reasonable baseline technique while
doing so. We posit that the success of RIDM is due to the
way in which it generates behavior trajectories and performs
learning – RIDM generates behavior by directly using the
demonstration data as the set points for a parameterized but
robust inverse dynamics model, and iteratively optimizes the
model parameters in response to the environment reward. The
above procedure not only generates reasonable trajectories
over which to learn, but also reduces the learning problem
to one over a relatively low-dimensional set of parameters
when compared to other approaches.

This paper opens up many possible directions for future
work. For one, it may be possible to extend RIDM to learn
a generalized controller from numerous demonstrations of
a specific task. For example, in an arm-reaching task, we
may have two different demonstrations with two different
target reaching points. Another open question is how RIDM
will perform when using optimization algorithms other than
CMA-ES, such as TRPO or PPO. Furthermore, in all of
our experiments, the state spaces are low-level features
(only joint angles). Another possible future direction is to
investigate how RIDM performs with video demonstrations.

REFERENCES

[1] S. Schaal, “Learning from demonstration,” in Advances in neural
information processing systems, 1997, pp. 1040–1046.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[4] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforce-
ment learning with human demonstrations of varying ability,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 2011, pp. 617–624.

[5] A. S. Lakshminarayanan, S. Ozair, and Y. Bengio, “Reinforcement
learning with few expert demonstrations,” in NIPS Workshop on Deep
Learning for Action and Interaction, vol. 2016, 2016.

[6] Y. Zhu, Z. Wang, J. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tun-
yasuvunakool, J. Kramár, R. Hadsell, N. de Freitas, and N. Heess,
“Reinforcement and imitation learning for diverse visuomotor skills,”
CoRR, vol. abs/1802.09564, 2018.

[7] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
NIPS, 2016, pp. 4565–4573.

[8] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou et al., “Learn-
ing from demonstrations for real world reinforcement learning,” arXiv
preprint arXiv:1704.03732, 2017.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[10] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI), July 2018.

[11] F. Torabi, G. Warnell, and P. . Stone, “Generative adversarial imitation
from observation,” arXiv preprint arXiv:1807.06158, 2018.

[12] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” CoRR, vol. abs/1707.03374, 2017.

[13] F. Torabi, G. Warnell, and P. Stone, “Recent advances in imitation
learning from observation,” in International Joint Conference on
Artificial Intelligence (IJCAI). AAAI Press, 2019.

[14] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” CoRR, vol. abs/1703.02018, 2017.

[15] D. Pomerleau, “Efficient Training of Artificial Neural Networks for
Autonomous Navigation,” Neural Computation, 1991.

[16] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE control systems magazine, vol. 26, no. 3, pp.
96–114, 2006.

[17] J. Hwangbo, C. Gehring, H. Sommer, R. Siegwart, and J. Buchli,
“Rockefficient black-box optimization for policy learning,” in 2014
IEEE-RAS International Conference on Humanoid Robots. IEEE,
2014, pp. 535–540.

[18] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence, vol. 76, no. 1-2, pp. 5–23, 2016.

[19] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe,
“Data-efficient autotuning with bayesian optimization: An industrial
control study,” IEEE Transactions on Control Systems Technology,
2019.

[20] M. Leonetti, P. Kormushev, and S. Sagratella, “Combining local and
global direct derivative-free optimization for reinforcement learning,”
Cybernetics and Information Technologies, vol. 12, no. 3, pp. 53–65,
2012.

[21] A. Marco Valle, “Gaussian process optimization for self-tuning con-
trol,” Master’s thesis, Universitat Politècnica de Catalunya, 2015.

[22] I. Hosu and T. Rebedea, “Playing atari games with deep reinforcement
learning and human checkpoint replay,” CoRR, vol. abs/1607.05077,
2016.

[23] K. Subramanian, C. L. Isbell, Jr., and A. L. Thomaz, “Exploration from
demonstration for interactive reinforcement learning,” in Proceedings
of the 2016 International Conference on Autonomous Agents &
Multiagent Systems, ser. AAMAS ’16, 2016, pp. 447–456.

[24] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” CoRR, vol. abs/1709.10089, 2017.

[25] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),” Evol. Comput., vol. 11, no. 1, pp. 1–18,
Mar. 2003.

[26] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “Boa: The bayesian
optimization algorithm,” in Proceedings of the 1st Annual Conference
on Genetic and Evolutionary Computation-Volume 1. Morgan Kauf-
mann Publishers Inc., 1999, pp. 525–532.

[27] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” CoRR, vol. abs/1502.05477, 2015.

[28] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2012, Vilamoura, Algarve,
Portugal, October 7-12, 2012. IEEE, 2012, pp. 5026–5033.

[29] F. Torabi, G. Warnell, and P. Stone, “Imitation learning from video
by leveraging proprioception,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2019.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[31] J. Bödecker and M. Asada, “Simspark concepts and application in
the robocup 3 d soccer simulation league,” 2008.

[32] Y. Xu and H. Vatankhah, “Simspark: An open source robot simulator
developed by the robocup community,” in RoboCup 2013: Robot
World Cup XVII, S. Behnke, M. Veloso, A. Visser, and R. Xiong, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 632–639.

[33] P. MacAlpine, F. Torabi, B. Pavse, J. Sigmon, and P. Stone, “UT Austin
Villa: RoboCup 2018 3D simulation league champions,” in RoboCup
2018: Robot Soccer World Cup XXII, ser. Lecture Notes in Artificial
Intelligence, D. Holz, K. Genter, M. Saad, and O. von Stryk, Eds.
Springer, 2019.

[34] L. P. Reis, N. Lau, A. Abdolmaleki, N. Shafii, R. Ferreira, A. Pereira,
and D. Simões, “Fc portugal 3d simulation team: Team description
paper 2017,” in RoboCup Symposium, 2017.

[35] T. Iwanaga, K. Onda, and T. Yamanishi, “Fut-k team description paper
2017.”

[36] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[37] F. Torabi, S. Geiger, G. Warnell, and P. Stone, “Sample-efficient
adversarial imitation learning from observation,” arXiv preprint
arXiv:1906.07374, 2019.

[38] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” CoRR, vol.
abs/1709.06560, 2017.

[39] J. Boedecker and M. Asada, “Simspark–concepts and application in
the robocup 3d soccer simulation league,” in SIMPAR-2008 Workshop
on the Universe of RoboCup Simulators, 2008, pp. 174–181.

[40] Y. Xu and H. Vatankhah, “Simspark: An open source robot simulator
developed by the robocup community,” in RoboCup 2013: Robot
World Cup XVII. Springer, 2014, pp. 632–639.

VIII. SUPPLEMENTARY MATERIALS

Here we include details of our inverse dynamics model and experiment details.

A. Proportional–Integral–Derivative (PID) Controller

The PID controller is a popular control loop feedback mechanism used in control systems. Given that we are trying to
adjust some variable, the PID controller will help in accurately applying the necessary correction to reach a desired setpoint.
For example, if we want a robot to move its arm from 10◦ to 30◦ (desired setpoint), the PID controller will appropriately
calculate the necessary torque/force to accomplish this transition. Moreover, the PID controller is also responsive; in other
words, if the force applied to move from 10◦ to 30◦ is less or more than required, it will accordingly respond and adapt.

Mathematically, the PID controller is modeled as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(3)

where e(t) is the error between the desired setpoint and current point value, Kp, Ki, and Kd are the proportionality
constants for the proportional, integral, and derivative terms respectively. Intuitively, each term means the following: the
proportional term signifies that if the desired setpoint is far from our current point, we should apply a larger correction to
reach there, the integral term keeps track of the cumulative error of the point from the desired setpoint at each time step,
this helps in applying a large correction if we have been far from the desired set point for a long time, and finally, the
derivative term represents a damping factor that controls the excessive correction that may result from the proportional and
integral components.

Since the PID controller accounts for the error to get from one state, st, to a desired setpoint, st+1, we view the PID
controller as an inverse dynamics model, a mapping from state-transitions to actions i.e. {(st, st+1) → at}, which tells us
which action at the agent took to go from state st to state st+1. We consider input and output of Equation 3 to be the raw
states and low-level actions respectively.

B. Experiment Details

1) MuJoCo Experiments: We train the experts for each of these domains using trust region policy optimization (TRPO)
[27] and proximal policy optimization (PPO) [30], and select those with the best performance. We use the hyperparameters
specified in [27] and [38]. In our case, TRPO worked best for Reacher, HalfCheetah, Swimmer, and Hopper and PPO worked
best for Ant and Walker2d. Details of the considered domains are as following:
• Reacher. The goal is to move a 2D robot arm to a fixed location. We use a 2 dimensional state and action space. The

original state space is 11 dimensions. Since we simplify the state space to only joint angles, we fix the target location.
The reward per time-step is given by the distance of the arm from the target per time-step and regularization factor of
the actions.

• HalfCheetah. The goal is to make a cheetah walk as fast as possible. We use a 6 dimensional state and action space.
The original state space is 17 dimensions. The reward per time-step is given by the cheetah’s forward velocity and
regularization of its actions.

• Swimmer. The goal is to make a snake-like creature swim as fast as possible in a viscous liquid. We use a 2 dimensional
state and action space. The original state space is 8 dimensions. The reward per time-step is given by the swimmer’s
forward velocity and regularization of its actions.

• Hopper. The goal is to make a 2D one-legged robot hop as fast as possible. We use a 3 dimensional state and action
space. The original state space is 11 dimensions. The reward per time-step is given by the change in the global position
of the hopper, its jump height, its forward velocity, regularization of its actions, and its survival.

• Ant. The goal is to make a 4-legged ant walk as fast as possible. We use an 8 dimensional state and action space. The
original state space is 111 dimensions. The reward per time-step is given by the change in the global position of the
ant, its forward velocity, regularization of its actions, its contact with the surface, and its survival.

• Walker2d. The goal is to make a 2D bipedal robot walk as fast as possible. We use a 6 dimensional state and action
space. The original state space is 17 dimensions. The reward per time-step is given by the change in the global position
of the walker, its walk height, its forward velocity, regularization of its actions, and its survival.

2) 3D Simulation: The RoboCup 3D simulation domain is supported by two components - SimSpark [39], [40] and Open
Dynamics Engine (ODE). SimSpark provides support for simulated physical multiagent system research. The ODE library
enables realistic simulation of rigid body dynamics.

In our experiments, we are interested in imitating two tasks: (1) speed walking and (2) long distance kick-offs. Since
SimSpark does not have built-in reward functions, we design our own reward function. Refer to Appendix VIII for details
about the tasks and the designed reward functions.

Since SimSpark does not have built-in reward functions, we design our own reward function. We note that the demonstrators
may have not used our reward function.

(a) Reacher (b) HalfCheetah (c) Swimmer (d) Hopper (e) Ant (f) Walker2d

Fig. 7. Representative screenshots of the MuJoCo domains considered in this paper.

Fig. 8. Simulated Nao robot in SimSpark

• Speed walking. The goal of this task is to have the agent walk as fast as possible while maintaining stability throughout
the episode. To do so, we define the total reward at the end of the episode to be the cumulative distance travelled per
time-step with a −5 penalty for falling down. The distance is measured in meters.

• Long-distance kick-off. The goal of the task is to kick the ball as far as possibletowards the center of the goal. To do
so, we define the reward function to be

Rkick = (1 + xtotal) · exp
(−θ2
180

)
+ xair · 100

with a −5 penalty for slightly bumping the ball, −10 penalty for falling down, where xtotal is the distance travelled
by the ball along the x-axis, θ is the angle of deviation of the ball’s trajectory from the straight line between the agent
and center of the goal, and xair is the distance along the x-axis for which the ball was travelling in the air. xtotal and
xair are in meters, and θ is in degrees. The reward function values kicks that travel in the air for a long distance and
exponentially decays the reward for off-target kicks.

3) UR5 Robot Arm: The original PID controller gains are hard-coded in the UR5 drivers when position-control mode is
activated. Moreover, robots already include such a controller which is why the proposed method is so attractive, i.e., it can
leverage common, pre-existing, and well-understood robotics control mechanisms.

Fig. 9. UR5 Robot Arm

	I INTRODUCTION
	II Related Work
	II-A Imitation from Observation and Reinforcement Learning
	II-B Integrating Reinforcement Learning and Imitation Learning

	III Preliminaries
	III-A Reinforcement Learning (RL)
	III-B Imitation Learning (IL)

	IV Reinforced Inverse Dynamics Modeling
	IV-A Inverse Dynamics Model Pre-training
	IV-B Inverse Dynamics Model Reinforcement

	V Empirical Results
	V-A Experimental Setup
	V-B RIDM Applied to MuJoCo Simulation
	V-B.1 Baseline: GAIfO+RL
	V-B.2 Hypothesis Validation

	V-C RIDM Applied to SimSpark RoboCup 3D Simulation
	V-D RIDM Applied to a Physical UR5 Robot Arm

	VI Additional Results
	VII Conclusion
	References
	VIII Supplementary Materials
	VIII-A Proportional–Integral–Derivative (PID) Controller
	VIII-B Experiment Details
	VIII-B.1 MuJoCo Experiments
	VIII-B.2 3D Simulation
	VIII-B.3 UR5 Robot Arm

